A much more detailed discussion is available here.

Reproduction number R

Computation of R from measured data

The bulletin from the Robert Koch institute [2] reports that an average infectious period of $tau = 4$ days is assumed. Based on that information, the description of the method to compute $R$ is [3]

  • compute an average $<n>_1$ of daily new infections over 4 days (say days 0 to 3)
  • compute an average $<n>_2$ of daily new infections over 4 subsequent days (say days 4 to 7)
  • compute the quotient $<n>_2 / <n>_1$

Then we repeat this as a sliding calculation for all subsequent days. This is the current method used in OSCOVIDA.

A much more detailed discussion of this calculation is available.

References

[1] https://en.wikipedia.org/wiki/Basic_reproduction_number

[2] [Robert Koch Institute: Epidemiologisches Bulletin 17 | 2020 23. April 2020](https://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2020/Ausgaben/17_20.html)

[3] "_Bei einer konstanten Generationszeit von 4 Tagen, ergibt sich R als Quotient der Anzahl von Neuerkran- kungen in zwei aufeinander folgenden Zeitabschnitten von jeweils 4 Tagen. Der so ermittelte R-Wert wird dem letzten dieser 8 Tage zugeordnet, weil erst dann die gesamte Information vorhanden ist._"