%config InlineBackend.figure_formats = ['svg']
import oscovida as ov
ov.display_binder_link("tutorial-overview-plot_time_step.ipynb")
Total cumulative numbers¶
The first graph returned by the overview
function (see the overview
and the explanation of the observables)
shows the cumulative numbers for COVID cases and deaths. Here we show how it is created internally.
Firstly, we import the plotting framework and some special functions:
import matplotlib.pyplot as plt
from matplotlib.ticker import ScalarFormatter, FuncFormatter, FixedLocator
from matplotlib.dates import DateFormatter, MONDAY, WeekdayLocator
We will need an empty Matplotlib graph object to pass onto the plotting functions.
fig1, ax1 = plt.subplots();
Now let's add some data to our empty graph
country = "Iran"
weeks = 30
cases, deaths = ov.get_country_data(country)
Now we populate the empty plot we have with the data. We call the ploting function twice with two different series of data:
ov.plot_time_step(ax=ax1, series=cases) # add cases to the graph
ov.plot_time_step(ax=ax1, series=deaths) # add deaths to the graph
ax1.set_title("Total numbers, log scale")
ax1.legend()
ax1
fig1
Additionaly, one may turn off the logarithmic scale with logscale=False
and pick another line style:
fig2, ax2 = plt.subplots();
ov.plot_time_step(ax=ax2, series=cases, style='*', logscale=False) # add cases to the graph
ov.plot_time_step(ax=ax2, series=deaths, style='--', logscale=False) # add deaths to the graph
ax2.set_title("Total numbers, linear scale")
ax2.legend();
Other tutorials¶
You can find more tutorials here.