Winter Olympics 2022¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 07/03/2023 09:39:27 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview("Winter Olympics 2022", weeks=5);
2023-03-07T09:39:30.683229 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar −0.050 −0.050 −0.025 −0.025 0.000 0.000 0.025 0.025 0.050 0.050 7-day incidence rate 0.0 Winter Olympics 2022, last 5 weeks, last data point from 2023-03-06 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar −0.050 −0.050 −0.025 −0.025 0.000 0.000 0.025 0.025 0.050 0.050 daily change Winter Olympics 2022 new cases (rolling 7d mean) Winter Olympics 2022 new cases 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar −0.050 −0.050 −0.025 −0.025 0.000 0.000 0.025 0.025 0.050 0.050 daily change Winter Olympics 2022 new deaths (rolling 7d mean) Winter Olympics 2022 new deaths 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.1 1.2 1.2 R & growth factor (based on cases) Winter Olympics 2022 cases daily growth factor Winter Olympics 2022 cases daily growth factor (rolling mean) Winter Olympics 2022 estimated R (using cases) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.1 1.2 1.2 R & growth factor (based on deaths) Winter Olympics 2022 deaths daily growth factor Winter Olympics 2022 deaths daily growth factor (rolling mean) Winter Olympics 2022 estimated R (using deaths) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
In [4]:
overview("Winter Olympics 2022");
2023-03-07T09:39:39.627210 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 0 100 100 200 200 7-day incidence rate 0.0 Winter Olympics 2022, last data point from 2023-03-06 Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 0 20 20 40 40 60 60 daily change Winter Olympics 2022 new cases (rolling 7d mean) Winter Olympics 2022 new cases Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 −0.050 −0.050 −0.025 −0.025 0.000 0.000 0.025 0.025 0.050 0.050 daily change Winter Olympics 2022 new deaths (rolling 7d mean) Winter Olympics 2022 new deaths Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.1 1.2 1.2 R & growth factor (based on cases) Winter Olympics 2022 cases daily growth factor Winter Olympics 2022 cases daily growth factor (rolling mean) Winter Olympics 2022 estimated R (using cases) Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.1 1.2 1.2 R & growth factor (based on deaths) Winter Olympics 2022 deaths daily growth factor Winter Olympics 2022 deaths daily growth factor (rolling mean) Winter Olympics 2022 estimated R (using deaths) Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 200 400 cases doubling time [days] Winter Olympics 2022 doubling time cases (rolling mean) 0.000 0.366 0.732
In [5]:
compare_plot("Winter Olympics 2022", normalise=True);
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
Cell In[5], line 1
----> 1 compare_plot("Winter Olympics 2022", normalise=True);

File /tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:1976, in compare_plot(country, region, subregion, savefig, normalise, dates, align)
   1974 if normalise:
   1975     _population = population(country=country, region=region, subregion=subregion)
-> 1976     c *= 100000 / _population
   1977     d *= 100000 / _population
   1979 if not subregion and not region:    # i.e. not a region of Germany

TypeError: unsupported operand type(s) for /: 'int' and 'NoneType'
In [6]:
# load the data
cases, deaths = get_country_data("Winter Olympics 2022")

# get population of the region for future normalisation:
inhabitants = population("Winter Olympics 2022")
print(f'Population of "Winter Olympics 2022": {inhabitants} people')

# compose into one table
table = compose_dataframe_summary(cases, deaths)

# show tables with up to 1000 rows
pd.set_option("display.max_rows", 1000)

# display the table
table
Population of "Winter Olympics 2022": None people
Out[6]:
total cases daily new cases total deaths daily new deaths
2023-03-06 535 0 0 0
2023-03-05 535 0 0 0
2023-03-04 535 0 0 0
2023-03-03 535 0 0 0
2023-03-02 535 0 0 0
... ... ... ... ...
2020-01-27 0 0 0 0
2020-01-26 0 0 0 0
2020-01-25 0 0 0 0
2020-01-24 0 0 0 0
2020-01-23 0 0 0 0

1139 rows × 4 columns

Explore the data in your web browser¶

  • If you want to execute this notebook, click here to use myBinder
  • and wait (~1 to 2 minutes)
  • Then press SHIFT+RETURN to advance code cell to code cell
  • See http://jupyter.org for more details on how to use Jupyter Notebook

Acknowledgements:¶

  • Johns Hopkins University provides data for countries
  • Robert Koch Institute provides data for within Germany
  • Atlo Team for gathering and providing data from Hungary (https://atlo.team/koronamonitor/)
  • Open source and scientific computing community for the data tools
  • Github for hosting repository and html files
  • Project Jupyter for the Notebook and binder service
  • The H2020 project Photon and Neutron Open Science Cloud (PaNOSC)

In [7]:
print(f"Download of data from Johns Hopkins university: cases at {fetch_cases_last_execution()} and "
      f"deaths at {fetch_deaths_last_execution()}.")
Download of data from Johns Hopkins university: cases at 07/03/2023 09:31:22 and deaths at 07/03/2023 09:31:21.
In [8]:
# to force a fresh download of data, run "clear_cache()"
In [9]:
print(f"Notebook execution took: {datetime.datetime.now()-start}")
Notebook execution took: 0:00:15.214414