US¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 07/03/2023 09:39:41 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview("US", weeks=5);
2023-03-07T09:39:45.127679 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 70 70 80 80 90 90 100 100 7-day incidence rate (per 100K people) 78.6 US, last 5 weeks, last data point from 2023-03-06 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 10 20 30 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.0 0.1 0.2 0.3 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.1 1.2 1.2 R & growth factor (based on cases) US cases daily growth factor US cases daily growth factor (rolling mean) US estimated R (using cases) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.2 1.4 1.4 R & growth factor (based on deaths) US deaths daily growth factor US deaths daily growth factor (rolling mean) US estimated R (using deaths) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 1000 2000 3000 cases doubling time [days] US doubling time cases (rolling mean) US doubling time deaths (rolling mean) 0 32947 65893 98840 daily change US new cases (rolling 7d mean) US new cases 0 329 659 988 daily change US new deaths (rolling 7d mean) US new deaths 0 1290 2579 3869 deaths doubling time [days]
In [4]:
overview("US");
2023-03-07T09:39:53.959253 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 0 500 500 1000 1000 1500 1500 7-day incidence rate (per 100K people) 78.6 US, last data point from 2023-03-06 Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 100 200 300 400 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0.0 0.5 1.0 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.1 1.2 1.2 R & growth factor (based on cases) US cases daily growth factor US cases daily growth factor (rolling mean) US estimated R (using cases) Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.2 1.4 1.4 R & growth factor (based on deaths) US deaths daily growth factor US deaths daily growth factor (rolling mean) US estimated R (using deaths) Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 1000 2000 3000 cases doubling time [days] US doubling time cases (rolling mean) US doubling time deaths (rolling mean) 0.000 0.329 0.659 0.988 1.318 daily change 1e6 US new cases (rolling 7d mean) US new cases 0 1647 3295 daily change US new deaths (rolling 7d mean) US new deaths 0 1338 2676 4014 deaths doubling time [days]
In [5]:
compare_plot("US", normalise=True);
2023-03-07T09:39:57.989933 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 2020-01 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 2023-05 0.001 0.001 0.1 0.1 10 10 1000 1000 daily new cases per 100K people (rolling 7-day mean) Daily cases (top) and deaths (below) for US US Germany Australia Poland Korea, South Belarus Switzerland 2020-01 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 2023-05 0.0001 0.0001 0.001 0.001 0.01 0.01 0.1 0.1 1 1 daily new deaths per 100K people (rolling 7-day mean) US Germany Australia Poland Korea, South Belarus Switzerland
In [6]:
# load the data
cases, deaths = get_country_data("US")

# get population of the region for future normalisation:
inhabitants = population("US")
print(f'Population of "US": {inhabitants} people')

# compose into one table
table = compose_dataframe_summary(cases, deaths)

# show tables with up to 1000 rows
pd.set_option("display.max_rows", 1000)

# display the table
table
Population of "US": 329466283 people
Out[6]:
total cases daily new cases total deaths daily new deaths
2023-03-06 103655657 8564 1122264 47
2023-03-05 103647093 1266 1122217 0
2023-03-04 103645827 1932 1122217 7
2023-03-03 103643895 60103 1122210 490
2023-03-02 103583792 61313 1121720 809
... ... ... ... ...
2020-01-27 5 0 0 0
2020-01-26 5 3 0 0
2020-01-25 2 0 0 0
2020-01-24 2 1 0 0
2020-01-23 1 0 0 0

1139 rows × 4 columns

Explore the data in your web browser¶

  • If you want to execute this notebook, click here to use myBinder
  • and wait (~1 to 2 minutes)
  • Then press SHIFT+RETURN to advance code cell to code cell
  • See http://jupyter.org for more details on how to use Jupyter Notebook

Acknowledgements:¶

  • Johns Hopkins University provides data for countries
  • Robert Koch Institute provides data for within Germany
  • Atlo Team for gathering and providing data from Hungary (https://atlo.team/koronamonitor/)
  • Open source and scientific computing community for the data tools
  • Github for hosting repository and html files
  • Project Jupyter for the Notebook and binder service
  • The H2020 project Photon and Neutron Open Science Cloud (PaNOSC)

In [7]:
print(f"Download of data from Johns Hopkins university: cases at {fetch_cases_last_execution()} and "
      f"deaths at {fetch_deaths_last_execution()}.")
Download of data from Johns Hopkins university: cases at 07/03/2023 09:31:22 and deaths at 07/03/2023 09:31:21.
In [8]:
# to force a fresh download of data, run "clear_cache()"
In [9]:
print(f"Notebook execution took: {datetime.datetime.now()-start}")
Notebook execution took: 0:00:17.119236