United States: Texas¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 26/01/2023 16:45:26 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview(country="US", region="Texas", weeks=5);
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:211: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpd = deaths.groupby('Province_State').sum()
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:213: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpc = cases.groupby('Province_State').sum()
2023-01-26T16:45:29.991577 image/svg+xml Matplotlib v3.6.3, https://matplotlib.org/ 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 100 100 120 120 140 140 7-day incidence rate (per 100K people) 85.2 Texas, US, last 5 weeks, last data point from 2023-01-25 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0 25 50 75 100 daily change normalised per 100K 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.0 0.2 0.4 0.6 0.8 daily change normalised per 100K 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases) United States: Texas cases daily growth factor United States: Texas cases daily growth factor (rolling mean) United States: Texas estimated R (using cases) 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.75 0.75 1.00 1.00 1.25 1.25 1.50 1.50 1.75 1.75 R & growth factor (based on deaths) United States: Texas deaths daily growth factor United States: Texas deaths daily growth factor (rolling mean) United States: Texas estimated R (using deaths) 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0 1000 2000 3000 cases doubling time [days] United States: Texas doubling time cases (rolling mean) United States: Texas doubling time deaths (rolling mean) 0 7249 14498 21747 28996 daily change United States: Texas new cases (rolling 7d mean) United States: Texas new cases 0 58 116 174 232 daily change United States: Texas new deaths (rolling 7d mean) United States: Texas new deaths 0 2435 4870 7305 deaths doubling time [days]
In [4]:
overview(country="US", region="Texas");
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:211: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpd = deaths.groupby('Province_State').sum()
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:213: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpc = cases.groupby('Province_State').sum()
2023-01-26T16:45:38.521858 image/svg+xml Matplotlib v3.6.3, https://matplotlib.org/ Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 0 500 500 1000 1000 1500 1500 7-day incidence rate (per 100K people) 85.2 Texas, US, last data point from 2023-01-25 Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 100 200 300 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 1 2 3 4 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases)