import datetime
import time
start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 07/03/2023 16:40:43 CEST
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
overview(country="US", region="Puerto Rico", weeks=5);
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:211: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function. tmpd = deaths.groupby('Province_State').sum() /tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:213: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function. tmpc = cases.groupby('Province_State').sum()
overview(country="US", region="Puerto Rico");
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:211: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function. tmpd = deaths.groupby('Province_State').sum() /tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:213: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function. tmpc = cases.groupby('Province_State').sum()
compare_plot(country="US", region="Puerto Rico");
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:211: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function. tmpd = deaths.groupby('Province_State').sum() /tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:213: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function. tmpc = cases.groupby('Province_State').sum()
# load the data
cases, deaths = get_country_data("US", "Puerto Rico")
# get population of the region for future normalisation:
inhabitants = population(country="US", region="Puerto Rico")
print(f'Population of country="US", region="Puerto Rico": {inhabitants} people')
# compose into one table
table = compose_dataframe_summary(cases, deaths)
# show tables with up to 1000 rows
pd.set_option("display.max_rows", 1000)
# display the table
table
Population of country="US", region="Puerto Rico": 3193694 people
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:211: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function. tmpd = deaths.groupby('Province_State').sum() /tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:213: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function. tmpc = cases.groupby('Province_State').sum()
total cases | daily new cases | total deaths | daily new deaths | |
---|---|---|---|---|
2023-03-06 | 1100557 | 199 | 5810 | 0 |
2023-03-05 | 1100358 | 398 | 5810 | 0 |
2023-03-04 | 1099960 | 349 | 5810 | 2 |
2023-03-03 | 1099611 | 461 | 5808 | 2 |
2023-03-02 | 1099150 | 472 | 5806 | 4 |
... | ... | ... | ... | ... |
2020-01-27 | 0 | 0 | 0 | 0 |
2020-01-26 | 0 | 0 | 0 | 0 |
2020-01-25 | 0 | 0 | 0 | 0 |
2020-01-24 | 0 | 0 | 0 | 0 |
2020-01-23 | 0 | 0 | 0 | 0 |
1139 rows × 4 columns
print(f"Download of data from Johns Hopkins university: cases at {fetch_cases_last_execution()} and "
f"deaths at {fetch_deaths_last_execution()}.")
Download of data from Johns Hopkins university: cases at 07/03/2023 09:31:22 and deaths at 07/03/2023 09:31:21.
# to force a fresh download of data, run "clear_cache()"
print(f"Notebook execution took: {datetime.datetime.now()-start}")
Notebook execution took: 0:00:16.248091