United States: North Dakota¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 26/01/2023 16:44:58 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview(country="US", region="North Dakota", weeks=5);
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:211: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpd = deaths.groupby('Province_State').sum()
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:213: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpc = cases.groupby('Province_State').sum()
2023-01-26T16:45:02.559792 image/svg+xml Matplotlib v3.6.3, https://matplotlib.org/ 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 20 20 40 40 60 60 80 80 100 100 7-day incidence rate (per 100K people) 6.8 North Dakota, US, last 5 weeks, last data point from 2023-01-25 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0 5 10 15 daily change normalised per 100K 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.0 0.5 1.0 1.5 daily change normalised per 100K 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.4 0.4 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases) United States: North Dakota cases daily growth factor United States: North Dakota cases daily growth factor (rolling mean) United States: North Dakota estimated R (using cases) 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan −5 −5 0 0 5 5 10 10 R & growth factor (based on deaths) United States: North Dakota deaths daily growth factor United States: North Dakota deaths daily growth factor (rolling mean) United States: North Dakota estimated R (using deaths) 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0 10000 20000 30000 cases doubling time [days] United States: North Dakota doubling time cases (rolling mean) United States: North Dakota doubling time deaths (rolling mean) 0.0 38.1 76.2 114.3 daily change United States: North Dakota new cases (rolling 7d mean) United States: North Dakota new cases 0.00 3.81 7.62 11.43 daily change United States: North Dakota new deaths (rolling 7d mean) United States: North Dakota new deaths 0 1644 3288 4931 deaths doubling time [days]
In [4]:
overview(country="US", region="North Dakota");
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:211: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpd = deaths.groupby('Province_State').sum()
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:213: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpc = cases.groupby('Province_State').sum()
2023-01-26T16:45:10.771728 image/svg+xml Matplotlib v3.6.3, https://matplotlib.org/ Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 0 500 500 1000 1000 1500 1500 2000 2000 7-day incidence rate (per 100K people) 6.8 North Dakota, US, last data point from 2023-01-25 Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 100 200 300 400 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 5 10 15 20 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.4 0.4 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases)