United States: New York¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 26/01/2023 16:44:58 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview(country="US", region="New York", weeks=5);
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:211: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpd = deaths.groupby('Province_State').sum()
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:213: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpc = cases.groupby('Province_State').sum()
2023-01-26T16:45:02.249403 image/svg+xml Matplotlib v3.6.3, https://matplotlib.org/ 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 150 150 200 200 250 250 7-day incidence rate (per 100K people) 145.8 New York, US, last 5 weeks, last data point from 2023-01-25 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0 20 40 60 daily change normalised per 100K 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.0 0.2 0.4 0.6 daily change normalised per 100K 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases) United States: New York cases daily growth factor United States: New York cases daily growth factor (rolling mean) United States: New York estimated R (using cases) 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.8 0.8 1.0 1.0 1.2 1.2 1.4 1.4 R & growth factor (based on deaths) United States: New York deaths daily growth factor United States: New York deaths daily growth factor (rolling mean) United States: New York estimated R (using deaths) 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0 500 1000 1500 cases doubling time [days] United States: New York doubling time cases (rolling mean) United States: New York doubling time deaths (rolling mean) 0 3891 7781 11672 daily change United States: New York new cases (rolling 7d mean) United States: New York new cases 0.0 38.9 77.8 116.7 daily change United States: New York new deaths (rolling 7d mean) United States: New York new deaths 0 697 1394 2091 deaths doubling time [days]
In [4]:
overview(country="US", region="New York");
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:211: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpd = deaths.groupby('Province_State').sum()
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:213: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpc = cases.groupby('Province_State').sum()
2023-01-26T16:45:09.911914 image/svg+xml Matplotlib v3.6.3, https://matplotlib.org/ Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 0 1000 1000 2000 2000 3000 3000 7-day incidence rate (per 100K people) 145.8 New York, US, last data point from 2023-01-25 Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 200 400 600 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 2 4 6 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases)