United States: New York¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 07/03/2023 16:40:21 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview(country="US", region="New York", weeks=5);
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:211: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpd = deaths.groupby('Province_State').sum()
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:213: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpc = cases.groupby('Province_State').sum()
2023-03-07T16:40:25.895920 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 40 40 60 60 80 80 100 100 120 120 7-day incidence rate (per 100K people) 55.4 New York, US, last 5 weeks, last data point from 2023-03-06 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 20 40 60 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.0 0.1 0.2 0.3 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.2 1.4 1.4 R & growth factor (based on cases) United States: New York cases daily growth factor United States: New York cases daily growth factor (rolling mean) United States: New York estimated R (using cases) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.5 0.5 1.0 1.0 1.5 1.5 R & growth factor (based on deaths) United States: New York deaths daily growth factor United States: New York deaths daily growth factor (rolling mean) United States: New York estimated R (using deaths) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 1000 2000 3000 4000 cases doubling time [days] United States: New York doubling time cases (rolling mean) United States: New York doubling time deaths (rolling mean) 0 3891 7781 11672 daily change United States: New York new cases (rolling 7d mean) United States: New York new cases 0.00 19.45 38.91 58.36 daily change United States: New York new deaths (rolling 7d mean) United States: New York new deaths 0 31958 63916 95874 127832 deaths doubling time [days]
In [4]:
overview(country="US", region="New York");
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:211: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpd = deaths.groupby('Province_State').sum()
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:213: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpc = cases.groupby('Province_State').sum()
2023-03-07T16:40:35.032598 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 0 1000 1000 2000 2000 3000 3000 7-day incidence rate (per 100K people) 55.4 New York, US, last data point from 2023-03-06 Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 200 400 600 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 2 4 6 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.2 1.4 1.4 R & growth factor (based on cases) United States: New York cases daily growth factor United States: New York cases daily growth factor (rolling mean) United States: New York estimated R (using cases) Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0.5 0.5 1.0 1.0 1.5 1.5 R & growth factor (based on deaths) United States: New York deaths daily growth factor United States: New York deaths daily growth factor (rolling mean) United States: New York estimated R (using deaths) Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 2000 4000 6000 cases doubling time [days] United States: New York doubling time cases (rolling mean) United States: New York doubling time deaths (rolling mean) 0 38907 77814 116721 daily change United States: New York new cases (rolling 7d mean) United States: New York new cases 0 389 778 1167 daily change United States: New York new deaths (rolling 7d mean) United States: New York new deaths 0 42896 85793 128689 deaths doubling time [days]
In [5]:
compare_plot(country="US", region="New York");
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:211: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpd = deaths.groupby('Province_State').sum()
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:213: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpc = cases.groupby('Province_State').sum()
In [6]:
# load the data
cases, deaths = get_country_data("US", "New York")

# get population of the region for future normalisation:
inhabitants = population(country="US", region="New York")
print(f'Population of country="US", region="New York": {inhabitants} people')

# compose into one table
table = compose_dataframe_summary(cases, deaths)

# show tables with up to 1000 rows
pd.set_option("display.max_rows", 1000)

# display the table
table
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:211: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpd = deaths.groupby('Province_State').sum()
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:213: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpc = cases.groupby('Province_State').sum()
Population of country="US", region="New York": 19453561 people
Out[6]:
total cases daily new cases total deaths daily new deaths
2023-03-06 6791004 2395 77102 13
2023-03-05 6788609 748 77089 0
2023-03-04 6787861 973 77089 0
2023-03-03 6786888 1724 77089 8
2023-03-02 6785164 2352 77081 38
... ... ... ... ...
2020-01-27 0 0 0 0
2020-01-26 0 0 0 0
2020-01-25 0 0 0 0
2020-01-24 0 0 0 0
2020-01-23 0 0 0 0

1139 rows × 4 columns

Explore the data in your web browser¶

  • If you want to execute this notebook, click here to use myBinder
  • and wait (~1 to 2 minutes)
  • Then press SHIFT+RETURN to advance code cell to code cell
  • See http://jupyter.org for more details on how to use Jupyter Notebook

Acknowledgements:¶

  • Johns Hopkins University provides data for countries
  • Robert Koch Institute provides data for within Germany
  • Atlo Team for gathering and providing data from Hungary (https://atlo.team/koronamonitor/)
  • Open source and scientific computing community for the data tools
  • Github for hosting repository and html files
  • Project Jupyter for the Notebook and binder service
  • The H2020 project Photon and Neutron Open Science Cloud (PaNOSC)

In [7]:
print(f"Download of data from Johns Hopkins university: cases at {fetch_cases_last_execution()} and "
      f"deaths at {fetch_deaths_last_execution()}.")
Download of data from Johns Hopkins university: cases at 07/03/2023 09:31:22 and deaths at 07/03/2023 09:31:21.
In [8]:
# to force a fresh download of data, run "clear_cache()"
In [9]:
print(f"Notebook execution took: {datetime.datetime.now()-start}")
Notebook execution took: 0:00:15.992374