United States: New Mexico¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 26/01/2023 16:44:51 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview(country="US", region="New Mexico", weeks=5);
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:211: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpd = deaths.groupby('Province_State').sum()
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:213: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpc = cases.groupby('Province_State').sum()
2023-01-26T16:44:54.652707 image/svg+xml Matplotlib v3.6.3, https://matplotlib.org/ 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 60 60 80 80 100 100 7-day incidence rate (per 100K people) 50.4 New Mexico, US, last 5 weeks, last data point from 2023-01-25 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0 10 20 30 40 daily change normalised per 100K 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.0 0.2 0.4 0.6 daily change normalised per 100K 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases) United States: New Mexico cases daily growth factor United States: New Mexico cases daily growth factor (rolling mean) United States: New Mexico estimated R (using cases) 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.8 0.8 1.0 1.0 1.2 1.2 1.4 1.4 R & growth factor (based on deaths) United States: New Mexico deaths daily growth factor United States: New Mexico deaths daily growth factor (rolling mean) United States: New Mexico estimated R (using deaths) 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0 1000 2000 3000 cases doubling time [days] United States: New Mexico doubling time cases (rolling mean) United States: New Mexico doubling time deaths (rolling mean) 0 210 419 629 839 daily change United States: New Mexico new cases (rolling 7d mean) United States: New Mexico new cases 0.00 4.19 8.39 12.58 daily change United States: New Mexico new deaths (rolling 7d mean) United States: New Mexico new deaths 0 1439 2879 4318 deaths doubling time [days]
In [4]:
overview(country="US", region="New Mexico");
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:211: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpd = deaths.groupby('Province_State').sum()
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:213: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpc = cases.groupby('Province_State').sum()
2023-01-26T16:45:02.952883 image/svg+xml Matplotlib v3.6.3, https://matplotlib.org/ Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 0 1000 1000 2000 2000 7-day incidence rate (per 100K people) 50.4 New Mexico, US, last data point from 2023-01-25 Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 250 500 750 1000 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 2 4 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases)