United States: Minnesota¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 26/01/2023 16:44:33 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview(country="US", region="Minnesota", weeks=5);
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:211: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpd = deaths.groupby('Province_State').sum()
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:213: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpc = cases.groupby('Province_State').sum()
2023-01-26T16:44:36.694613 image/svg+xml Matplotlib v3.6.3, https://matplotlib.org/ 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 60 60 80 80 100 100 7-day incidence rate (per 100K people) 46.9 Minnesota, US, last 5 weeks, last data point from 2023-01-25 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0 25 50 75 100 daily change normalised per 100K 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.00 0.25 0.50 0.75 1.00 daily change normalised per 100K 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases) United States: Minnesota cases daily growth factor United States: Minnesota cases daily growth factor (rolling mean) United States: Minnesota estimated R (using cases) 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.75 0.75 1.00 1.00 1.25 1.25 1.50 1.50 1.75 1.75 R & growth factor (based on deaths) United States: Minnesota deaths daily growth factor United States: Minnesota deaths daily growth factor (rolling mean) United States: Minnesota estimated R (using deaths) 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0 1000 2000 3000 4000 cases doubling time [days] United States: Minnesota doubling time cases (rolling mean) United States: Minnesota doubling time deaths (rolling mean) 0 1410 2820 4230 5640 daily change United States: Minnesota new cases (rolling 7d mean) United States: Minnesota new cases 0.0 14.1 28.2 42.3 56.4 daily change United States: Minnesota new deaths (rolling 7d mean) United States: Minnesota new deaths 0 512 1025 1537 2050 deaths doubling time [days]
In [4]:
overview(country="US", region="Minnesota");
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:211: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpd = deaths.groupby('Province_State').sum()
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:213: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpc = cases.groupby('Province_State').sum()
2023-01-26T16:44:44.795049 image/svg+xml Matplotlib v3.6.3, https://matplotlib.org/ Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 0 500 500 1000 1000 1500 1500 2000 2000 7-day incidence rate (per 100K people) 46.9 Minnesota, US, last data point from 2023-01-25 Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 200 400 600 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.0 0.5 1.0 1.5 2.0 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases)