United States: Massachusetts¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 07/03/2023 16:39:51 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview(country="US", region="Massachusetts", weeks=5);
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:211: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpd = deaths.groupby('Province_State').sum()
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:213: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpc = cases.groupby('Province_State').sum()
2023-03-07T16:39:54.871068 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 60 60 70 70 80 80 90 90 100 100 7-day incidence rate (per 100K people) 59.4 Massachusetts, US, last 5 weeks, last data point from 2023-03-06 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 25 50 75 100 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 1 2 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases) United States: Massachusetts cases daily growth factor United States: Massachusetts cases daily growth factor (rolling mean) United States: Massachusetts estimated R (using cases) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on deaths) United States: Massachusetts deaths daily growth factor United States: Massachusetts deaths daily growth factor (rolling mean) United States: Massachusetts estimated R (using deaths) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 1000 2000 3000 cases doubling time [days] United States: Massachusetts doubling time cases (rolling mean) United States: Massachusetts doubling time deaths (rolling mean) 0 1723 3446 5169 6893 daily change United States: Massachusetts new cases (rolling 7d mean) United States: Massachusetts new cases 0.0 68.9 137.9 daily change United States: Massachusetts new deaths (rolling 7d mean) United States: Massachusetts new deaths 0 445 889 1334 deaths doubling time [days]
In [4]:
overview(country="US", region="Massachusetts");
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:211: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpd = deaths.groupby('Province_State').sum()
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:213: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpc = cases.groupby('Province_State').sum()
2023-03-07T16:40:03.804025 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 0 1000 1000 2000 2000 7-day incidence rate (per 100K people) 59.4 Massachusetts, US, last data point from 2023-03-06 Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 200 400 600 800 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 1 2 3 4 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases)