United States: District of Columbia¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 26/01/2023 16:43:59 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview(country="US", region="District of Columbia", weeks=5);
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:211: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpd = deaths.groupby('Province_State').sum()
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:213: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpc = cases.groupby('Province_State').sum()
2023-01-26T16:44:03.309385 image/svg+xml Matplotlib v3.6.3, https://matplotlib.org/ 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0 0 50 50 100 100 150 150 7-day incidence rate (per 100K people) 78.6 District of Columbia, US, last 5 weeks, last data point from 2023-01-25 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0 50 100 150 daily change normalised per 100K 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.0 0.2 0.4 0.6 0.8 daily change normalised per 100K 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 1 1 2 2 3 3 4 4 R & growth factor (based on cases) United States: District of Columbia cases daily growth factor United States: District of Columbia cases daily growth factor (rolling mean) United States: District of Columbia estimated R (using cases) 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 1 1 2 2 3 3 4 4 R & growth factor (based on deaths) United States: District of Columbia deaths daily growth factor United States: District of Columbia deaths daily growth factor (rolling mean) United States: District of Columbia estimated R (using deaths) 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0 500 1000 1500 2000 cases doubling time [days] United States: District of Columbia doubling time cases (rolling mean) United States: District of Columbia doubling time deaths (rolling mean) 0 353 706 1059 daily change United States: District of Columbia new cases (rolling 7d mean) United States: District of Columbia new cases 0.000 1.411 2.823 4.234 5.646 daily change United States: District of Columbia new deaths (rolling 7d mean) United States: District of Columbia new deaths 0 518 1036 1554 2073 deaths doubling time [days]
In [4]:
overview(country="US", region="District of Columbia");
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:211: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpd = deaths.groupby('Province_State').sum()
/tank/oscovida/work/oscovida.github.io/oscovida.github.io/.venv/lib/python3.9/site-packages/oscovida/oscovida.py:213: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  tmpc = cases.groupby('Province_State').sum()
2023-01-26T16:44:11.085744 image/svg+xml Matplotlib v3.6.3, https://matplotlib.org/ Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 0 1000 1000 2000 2000 7-day incidence rate (per 100K people) 78.6 District of Columbia, US, last data point from 2023-01-25 Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 500 1000 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 1 2 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 1 1 2 2 3 3 4 4 R & growth factor (based on cases) United States: District of Columbia cases daily growth factor United States: District of Columbia cases daily growth factor (rolling mean) United States: District of Columbia estimated R (using cases) Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 1 1 2 2