Thailand¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 26/01/2023 09:32:14 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview("Thailand", weeks=5);
2023-01-26T09:32:17.815998 image/svg+xml Matplotlib v3.6.3, https://matplotlib.org/ 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0 0 2 2 4 4 7-day incidence rate (per 100K people) 0.9 Thailand, last 5 weeks, last data point from 2023-01-25 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0 1 2 3 4 daily change normalised per 100K 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.00 0.05 0.10 daily change normalised per 100K 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.4 0.4 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases) Thailand cases daily growth factor Thailand cases daily growth factor (rolling mean) Thailand estimated R (using cases) 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on deaths) Thailand deaths daily growth factor Thailand deaths daily growth factor (rolling mean) Thailand estimated R (using deaths) 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0 10000 20000 30000 40000 cases doubling time [days] Thailand doubling time cases (rolling mean) Thailand doubling time deaths (rolling mean) 0 698 1396 2094 2792 daily change Thailand new cases (rolling 7d mean) Thailand new cases 0.0 34.9 69.8 daily change Thailand new deaths (rolling 7d mean) Thailand new deaths 0 1027 2055 3082 4109 deaths doubling time [days]
In [4]:
overview("Thailand");
2023-01-26T09:32:25.981849 image/svg+xml Matplotlib v3.6.3, https://matplotlib.org/ Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 0 100 100 200 200 7-day incidence rate (per 100K people) 0.9 Thailand, last data point from 2023-01-25 Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 20 40 60 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.0 0.1 0.2 0.3 0.4 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.4 0.4 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases)