Spain¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 26/01/2023 09:31:28 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview("Spain", weeks=5);
2023-01-26T09:31:31.462469 image/svg+xml Matplotlib v3.6.3, https://matplotlib.org/ 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0 0 20 20 40 40 7-day incidence rate (per 100K people) 24.4 Spain, last 5 weeks, last data point from 2023-01-25 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0 10 20 30 40 daily change normalised per 100K 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.0 0.2 0.4 0.6 0.8 daily change normalised per 100K 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 R & growth factor (based on cases) Spain cases daily growth factor Spain cases daily growth factor (rolling mean) Spain estimated R (using cases) 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 1.0 1.0 1.5 1.5 R & growth factor (based on deaths) Spain deaths daily growth factor Spain deaths daily growth factor (rolling mean) Spain estimated R (using deaths) 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0 2000 4000 6000 8000 cases doubling time [days] Spain doubling time cases (rolling mean) Spain doubling time deaths (rolling mean) 0 4675 9351 14026 18702 daily change Spain new cases (rolling 7d mean) Spain new cases 0.0 93.5 187.0 280.5 374.0 daily change Spain new deaths (rolling 7d mean) Spain new deaths 0 886 1772 2658 3543 deaths doubling time [days]
In [4]:
overview("Spain");
2023-01-26T09:31:39.930492 image/svg+xml Matplotlib v3.6.3, https://matplotlib.org/ Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 0 500 500 1000 1000 1500 1500 2000 2000 7-day incidence rate (per 100K people) 24.4 Spain, last data point from 2023-01-25 Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 200 400 600 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 1 2 3 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 R & growth factor (based on cases)