Slovakia¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 07/03/2023 09:38:20 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview("Slovakia", weeks=5);
2023-03-07T09:38:23.841975 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 15 15 20 20 25 25 7-day incidence rate (per 100K people) Slovakia, last 5 weeks, last data point from 2023-03-06 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 2 4 6 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.00 0.02 0.04 0.06 0.08 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases) Slovakia cases daily growth factor Slovakia cases daily growth factor (rolling mean) Slovakia estimated R (using cases) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on deaths) Slovakia deaths daily growth factor Slovakia deaths daily growth factor (rolling mean) Slovakia estimated R (using deaths) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 5000 10000 15000 20000 cases doubling time [days] Slovakia doubling time cases (rolling mean) Slovakia doubling time deaths (rolling mean) 0.0 108.7 217.4 326.1 daily change Slovakia new cases (rolling 7d mean) Slovakia new cases 0.000 1.087 2.174 3.261 4.348 daily change Slovakia new deaths (rolling 7d mean) Slovakia new deaths 0 3437 6874 10311 13748 deaths doubling time [days]
In [4]:
overview("Slovakia");
2023-03-07T09:38:32.810851 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 0 1000 1000 2000 2000 3000 3000 7-day incidence rate (per 100K people) 26.8 Slovakia, last data point from 2023-03-06 Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 200 400 600 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 1 2 3 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases) Slovakia cases daily growth factor Slovakia cases daily growth factor (rolling mean) Slovakia estimated R (using cases) Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on deaths) Slovakia deaths daily growth factor Slovakia deaths daily growth factor (rolling mean) Slovakia estimated R (using deaths) Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 20000 40000 60000 cases doubling time [days] Slovakia doubling time cases (rolling mean) Slovakia doubling time deaths (rolling mean) 0 10869 21739 32608 daily change Slovakia new cases (rolling 7d mean) Slovakia new cases 0.0 54.3 108.7 163.0 daily change Slovakia new deaths (rolling 7d mean) Slovakia new deaths 0 6542 13084 19626 deaths doubling time [days]
In [5]:
compare_plot("Slovakia", normalise=True);
2023-03-07T09:38:36.851494 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 2020-01 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 2023-05 0.001 0.001 0.1 0.1 10 10 1000 1000 daily new cases per 100K people (rolling 7-day mean) Daily cases (top) and deaths (below) for Slovakia Slovakia Germany Australia Poland Korea, South Belarus Switzerland US 2020-01 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 2023-05 0.0001 0.0001 0.001 0.001 0.01 0.01 0.1 0.1 1 1 daily new deaths per 100K people (rolling 7-day mean) Slovakia Germany Australia Poland Korea, South Belarus Switzerland US
In [6]:
# load the data
cases, deaths = get_country_data("Slovakia")

# get population of the region for future normalisation:
inhabitants = population("Slovakia")
print(f'Population of "Slovakia": {inhabitants} people')

# compose into one table
table = compose_dataframe_summary(cases, deaths)

# show tables with up to 1000 rows
pd.set_option("display.max_rows", 1000)

# display the table
table
Population of "Slovakia": 5434712 people
Out[6]:
total cases daily new cases total deaths daily new deaths
2023-03-06 2666427 54 21031 1
2023-03-05 2666373 31 21030 0
2023-03-04 2666342 338 21030 1
2023-03-03 2666004 239 21029 3
2023-03-02 2665765 217 21026 2
... ... ... ... ...
2020-01-27 0 0 0 0
2020-01-26 0 0 0 0
2020-01-25 0 0 0 0
2020-01-24 0 0 0 0
2020-01-23 0 0 0 0

1139 rows × 4 columns

Explore the data in your web browser¶

  • If you want to execute this notebook, click here to use myBinder
  • and wait (~1 to 2 minutes)
  • Then press SHIFT+RETURN to advance code cell to code cell
  • See http://jupyter.org for more details on how to use Jupyter Notebook

Acknowledgements:¶

  • Johns Hopkins University provides data for countries
  • Robert Koch Institute provides data for within Germany
  • Atlo Team for gathering and providing data from Hungary (https://atlo.team/koronamonitor/)
  • Open source and scientific computing community for the data tools
  • Github for hosting repository and html files
  • Project Jupyter for the Notebook and binder service
  • The H2020 project Photon and Neutron Open Science Cloud (PaNOSC)

In [7]:
print(f"Download of data from Johns Hopkins university: cases at {fetch_cases_last_execution()} and "
      f"deaths at {fetch_deaths_last_execution()}.")
Download of data from Johns Hopkins university: cases at 07/03/2023 09:31:22 and deaths at 07/03/2023 09:31:21.
In [8]:
# to force a fresh download of data, run "clear_cache()"
In [9]:
print(f"Notebook execution took: {datetime.datetime.now()-start}")
Notebook execution took: 0:00:17.583378