San Marino¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 07/03/2023 09:38:00 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview("San Marino", weeks=5);
2023-03-07T09:38:04.107156 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 0 50 50 100 100 150 150 7-day incidence rate (per 100K people) 138.5 San Marino, last 5 weeks, last data point from 2023-03-06 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 50 100 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar −0.050 −0.050 −0.025 −0.025 0.000 0.000 0.025 0.025 0.050 0.050 daily change San Marino new deaths (rolling 7d mean) San Marino new deaths 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 1 1 2 2 3 3 R & growth factor (based on cases) San Marino cases daily growth factor San Marino cases daily growth factor (rolling mean) San Marino estimated R (using cases) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.1 1.2 1.2 R & growth factor (based on deaths) San Marino deaths daily growth factor San Marino deaths daily growth factor (rolling mean) San Marino estimated R (using deaths) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 2000 4000 6000 8000 cases doubling time [days] San Marino doubling time cases (rolling mean) 0.00 16.97 33.94 daily change San Marino new cases (rolling 7d mean) San Marino new cases 0.000 0.236 0.471 0.707 0.942
In [4]:
overview("San Marino");
2023-03-07T09:38:12.772443 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 0 1000 1000 2000 2000 3000 3000 4000 4000 7-day incidence rate (per 100K people) 138.5 San Marino, last data point from 2023-03-06 Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 500 1000 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 5 10 15 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 1 1 2 2 3 3 R & growth factor (based on cases) San Marino cases daily growth factor San Marino cases daily growth factor (rolling mean) San Marino estimated R (using cases) Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.1 1.2 1.2 R & growth factor (based on deaths) San Marino deaths daily growth factor San Marino deaths daily growth factor (rolling mean) San Marino estimated R (using deaths) Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 2000 4000 6000 8000 cases doubling time [days] San Marino doubling time cases (rolling mean) San Marino doubling time deaths (rolling mean) 0.0 169.7 339.4 daily change San Marino new cases (rolling 7d mean) San Marino new cases 0.000 1.697 3.394 5.091 daily change San Marino new deaths (rolling 7d mean) San Marino new deaths 0.00 15.69 31.37 47.06 62.75 deaths doubling time [days]
In [5]:
compare_plot("San Marino", normalise=True);
2023-03-07T09:38:16.924889 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 2020-01 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 2023-05 0.001 0.001 0.1 0.1 10 10 1000 1000 daily new cases per 100K people (rolling 7-day mean) Daily cases (top) and deaths (below) for San Marino San Marino Germany Australia Poland Korea, South Belarus Switzerland US 2020-01 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 2023-05 0.0001 0.0001 0.001 0.001 0.01 0.01 0.1 0.1 1 1 10 10 daily new deaths per 100K people (rolling 7-day mean) San Marino Germany Australia Poland Korea, South Belarus Switzerland US
In [6]:
# load the data
cases, deaths = get_country_data("San Marino")

# get population of the region for future normalisation:
inhabitants = population("San Marino")
print(f'Population of "San Marino": {inhabitants} people')

# compose into one table
table = compose_dataframe_summary(cases, deaths)

# show tables with up to 1000 rows
pd.set_option("display.max_rows", 1000)

# display the table
table
Population of "San Marino": 33938 people
Out[6]:
total cases daily new cases total deaths daily new deaths
2023-03-06 23583 0 122 0
2023-03-05 23583 0 122 0
2023-03-04 23583 0 122 0
2023-03-03 23583 0 122 0
2023-03-02 23583 0 122 0
... ... ... ... ...
2020-01-27 0 0 0 0
2020-01-26 0 0 0 0
2020-01-25 0 0 0 0
2020-01-24 0 0 0 0
2020-01-23 0 0 0 0

1139 rows × 4 columns

Explore the data in your web browser¶

  • If you want to execute this notebook, click here to use myBinder
  • and wait (~1 to 2 minutes)
  • Then press SHIFT+RETURN to advance code cell to code cell
  • See http://jupyter.org for more details on how to use Jupyter Notebook

Acknowledgements:¶

  • Johns Hopkins University provides data for countries
  • Robert Koch Institute provides data for within Germany
  • Atlo Team for gathering and providing data from Hungary (https://atlo.team/koronamonitor/)
  • Open source and scientific computing community for the data tools
  • Github for hosting repository and html files
  • Project Jupyter for the Notebook and binder service
  • The H2020 project Photon and Neutron Open Science Cloud (PaNOSC)

In [7]:
print(f"Download of data from Johns Hopkins university: cases at {fetch_cases_last_execution()} and "
      f"deaths at {fetch_deaths_last_execution()}.")
Download of data from Johns Hopkins university: cases at 07/03/2023 09:31:22 and deaths at 07/03/2023 09:31:21.
In [8]:
# to force a fresh download of data, run "clear_cache()"
In [9]:
print(f"Notebook execution took: {datetime.datetime.now()-start}")
Notebook execution took: 0:00:16.906151