Russia¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 07/03/2023 09:37:51 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview("Russia", weeks=5);
2023-03-07T09:37:55.014670 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 40 40 50 50 60 60 7-day incidence rate (per 100K people) 61.5 Russia, last 5 weeks, last data point from 2023-03-06 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.0 2.5 5.0 7.5 10.0 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.00 0.01 0.02 0.03 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases) Russia cases daily growth factor Russia cases daily growth factor (rolling mean) Russia estimated R (using cases) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.1 1.2 1.2 R & growth factor (based on deaths) Russia deaths daily growth factor Russia deaths daily growth factor (rolling mean) Russia estimated R (using deaths) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 500 1000 1500 2000 cases doubling time [days] Russia doubling time cases (rolling mean) Russia doubling time deaths (rolling mean) 0 3648 7297 10945 14593 daily change Russia new cases (rolling 7d mean) Russia new cases 0.00 14.59 29.19 43.78 daily change Russia new deaths (rolling 7d mean) Russia new deaths 0 2394 4787 7181 9574 deaths doubling time [days]
In [4]:
overview("Russia");
2023-03-07T09:38:04.594786 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 0 200 200 400 400 600 600 800 800 7-day incidence rate (per 100K people) 61.5 Russia, last data point from 2023-03-06 Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 50 100 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0.0 0.2 0.4 0.6 0.8 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases) Russia cases daily growth factor Russia cases daily growth factor (rolling mean) Russia estimated R (using cases) Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.1 1.2 1.2 R & growth factor (based on deaths) Russia deaths daily growth factor Russia deaths daily growth factor (rolling mean) Russia estimated R (using deaths) Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 2000 4000 cases doubling time [days] Russia doubling time cases (rolling mean) Russia doubling time deaths (rolling mean) 0 72967 145934 daily change Russia new cases (rolling 7d mean) Russia new cases 0 292 584 876 1167 daily change Russia new deaths (rolling 7d mean) Russia new deaths 0 3510 7020 deaths doubling time [days]
In [5]:
compare_plot("Russia", normalise=True);
2023-03-07T09:38:08.556746 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 2020-01 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 2023-05 0.001 0.001 0.1 0.1 10 10 1000 1000 daily new cases per 100K people (rolling 7-day mean) Daily cases (top) and deaths (below) for Russia Russia Germany Australia Poland Korea, South Belarus Switzerland US 2020-01 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 2023-05 0.0001 0.0001 0.001 0.001 0.01 0.01 0.1 0.1 1 1 daily new deaths per 100K people (rolling 7-day mean) Russia Germany Australia Poland Korea, South Belarus Switzerland US
In [6]:
# load the data
cases, deaths = get_country_data("Russia")

# get population of the region for future normalisation:
inhabitants = population("Russia")
print(f'Population of "Russia": {inhabitants} people')

# compose into one table
table = compose_dataframe_summary(cases, deaths)

# show tables with up to 1000 rows
pd.set_option("display.max_rows", 1000)

# display the table
table
Population of "Russia": 145934460 people
Out[6]:
total cases daily new cases total deaths daily new deaths
2023-03-06 22040875 11051 388355 35
2023-03-05 22029824 13418 388320 42
2023-03-04 22016406 13921 388278 38
2023-03-03 22002485 14375 388240 39
2023-03-02 21988110 14012 388201 38
... ... ... ... ...
2020-01-27 0 0 0 0
2020-01-26 0 0 0 0
2020-01-25 0 0 0 0
2020-01-24 0 0 0 0
2020-01-23 0 0 0 0

1139 rows × 4 columns

Explore the data in your web browser¶

  • If you want to execute this notebook, click here to use myBinder
  • and wait (~1 to 2 minutes)
  • Then press SHIFT+RETURN to advance code cell to code cell
  • See http://jupyter.org for more details on how to use Jupyter Notebook

Acknowledgements:¶

  • Johns Hopkins University provides data for countries
  • Robert Koch Institute provides data for within Germany
  • Atlo Team for gathering and providing data from Hungary (https://atlo.team/koronamonitor/)
  • Open source and scientific computing community for the data tools
  • Github for hosting repository and html files
  • Project Jupyter for the Notebook and binder service
  • The H2020 project Photon and Neutron Open Science Cloud (PaNOSC)

In [7]:
print(f"Download of data from Johns Hopkins university: cases at {fetch_cases_last_execution()} and "
      f"deaths at {fetch_deaths_last_execution()}.")
Download of data from Johns Hopkins university: cases at 07/03/2023 09:31:22 and deaths at 07/03/2023 09:31:21.
In [8]:
# to force a fresh download of data, run "clear_cache()"
In [9]:
print(f"Notebook execution took: {datetime.datetime.now()-start}")
Notebook execution took: 0:00:17.792294