Poland¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 07/03/2023 09:37:36 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview("Poland", weeks=5);
2023-03-07T09:37:39.819572 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 10 10 20 20 30 30 40 40 7-day incidence rate (per 100K people) Poland, last 5 weeks, last data point from 2023-03-06 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 2 4 6 8 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.00 0.02 0.04 0.06 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.8 0.8 1.0 1.0 1.2 1.2 1.4 1.4 R & growth factor (based on cases) Poland cases daily growth factor Poland cases daily growth factor (rolling mean) Poland estimated R (using cases) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.75 0.75 1.00 1.00 1.25 1.25 1.50 1.50 1.75 1.75 R & growth factor (based on deaths) Poland deaths daily growth factor Poland deaths daily growth factor (rolling mean) Poland estimated R (using deaths) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 2000 4000 6000 8000 cases doubling time [days] Poland doubling time cases (rolling mean) Poland doubling time deaths (rolling mean) 0 757 1514 2271 3028 daily change Poland new cases (rolling 7d mean) Poland new cases 0.00 7.57 15.14 22.71 daily change Poland new deaths (rolling 7d mean) Poland new deaths 0 6246 12492 18739 24985 deaths doubling time [days]
In [4]:
overview("Poland");
2023-03-07T09:37:48.857571 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 0 200 200 400 400 600 600 800 800 7-day incidence rate (per 100K people) 45.1 Poland, last data point from 2023-03-06 Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 50 100 150 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 1 2 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0.8 0.8 1.0 1.0 1.2 1.2 1.4 1.4 R & growth factor (based on cases) Poland cases daily growth factor Poland cases daily growth factor (rolling mean) Poland estimated R (using cases) Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0.75 0.75 1.00 1.00 1.25 1.25 1.50 1.50 1.75 1.75 R & growth factor (based on deaths) Poland deaths daily growth factor Poland deaths daily growth factor (rolling mean) Poland estimated R (using deaths) Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 10000 20000 30000 cases doubling time [days] Poland doubling time cases (rolling mean) Poland doubling time deaths (rolling mean) 0 18923 37847 56770 daily change Poland new cases (rolling 7d mean) Poland new cases 0 378 757 daily change Poland new deaths (rolling 7d mean) Poland new deaths 0 13663 27325 40988 deaths doubling time [days]
In [5]:
compare_plot("Poland", normalise=True);
2023-03-07T09:37:52.861802 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 2020-01 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 2023-05 0.001 0.001 0.1 0.1 10 10 1000 1000 daily new cases per 100K people (rolling 7-day mean) Daily cases (top) and deaths (below) for Poland Poland Germany Australia Korea, South Belarus Switzerland US 2020-01 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 2023-05 0.0001 0.0001 0.001 0.001 0.01 0.01 0.1 0.1 1 1 daily new deaths per 100K people (rolling 7-day mean) Poland Germany Australia Korea, South Belarus Switzerland US
In [6]:
# load the data
cases, deaths = get_country_data("Poland")

# get population of the region for future normalisation:
inhabitants = population("Poland")
print(f'Population of "Poland": {inhabitants} people')

# compose into one table
table = compose_dataframe_summary(cases, deaths)

# show tables with up to 1000 rows
pd.set_option("display.max_rows", 1000)

# display the table
table
Population of "Poland": 37846605 people
Out[6]:
total cases daily new cases total deaths daily new deaths
2023-03-06 6432765 450 118952 0
2023-03-05 6432315 427 118952 0
2023-03-04 6431888 3105 118952 11
2023-03-03 6428783 3283 118941 17
2023-03-02 6425500 3033 118924 26
... ... ... ... ...
2020-01-27 0 0 0 0
2020-01-26 0 0 0 0
2020-01-25 0 0 0 0
2020-01-24 0 0 0 0
2020-01-23 0 0 0 0

1139 rows × 4 columns

Explore the data in your web browser¶

  • If you want to execute this notebook, click here to use myBinder
  • and wait (~1 to 2 minutes)
  • Then press SHIFT+RETURN to advance code cell to code cell
  • See http://jupyter.org for more details on how to use Jupyter Notebook

Acknowledgements:¶

  • Johns Hopkins University provides data for countries
  • Robert Koch Institute provides data for within Germany
  • Atlo Team for gathering and providing data from Hungary (https://atlo.team/koronamonitor/)
  • Open source and scientific computing community for the data tools
  • Github for hosting repository and html files
  • Project Jupyter for the Notebook and binder service
  • The H2020 project Photon and Neutron Open Science Cloud (PaNOSC)

In [7]:
print(f"Download of data from Johns Hopkins university: cases at {fetch_cases_last_execution()} and "
      f"deaths at {fetch_deaths_last_execution()}.")
Download of data from Johns Hopkins university: cases at 07/03/2023 09:31:22 and deaths at 07/03/2023 09:31:21.
In [8]:
# to force a fresh download of data, run "clear_cache()"
In [9]:
print(f"Notebook execution took: {datetime.datetime.now()-start}")
Notebook execution took: 0:00:17.285290