Libya¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 26/01/2023 09:29:00 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview("Libya", weeks=5);
2023-01-26T09:29:03.969270 image/svg+xml Matplotlib v3.6.3, https://matplotlib.org/ 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.3 7-day incidence rate (per 100K people) 0.0 Libya, last 5 weeks, last data point from 2023-01-25 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.0 0.1 0.2 0.3 daily change normalised per 100K 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan −0.050 −0.050 −0.025 −0.025 0.000 0.000 0.025 0.025 0.050 0.050 daily change Libya new deaths (rolling 7d mean) Libya new deaths 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0 0 1 1 2 2 3 3 4 4 R & growth factor (based on cases) Libya cases daily growth factor Libya cases daily growth factor (rolling mean) Libya estimated R (using cases) 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.1 1.2 1.2 R & growth factor (based on deaths) Libya deaths daily growth factor Libya deaths daily growth factor (rolling mean) Libya estimated R (using deaths) 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0 200000 400000 600000 cases doubling time [days] Libya doubling time cases (rolling mean) 0.00 6.87 13.74 20.61 daily change Libya new cases (rolling 7d mean) Libya new cases 0.000 0.307 0.614 0.920
In [4]:
overview("Libya");
2023-01-26T09:29:12.330326 image/svg+xml Matplotlib v3.6.3, https://matplotlib.org/ Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 0 100 100 200 200 300 300 400 400 7-day incidence rate (per 100K people) 0.0 Libya, last data point from 2023-01-25 Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 20 40 60 80 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.0 0.2 0.4 0.6 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 0 1 1 2 2 3 3 4 4 R & growth factor (based on cases) Libya cases daily growth factor Libya cases daily growth factor (rolling mean) Libya estimated R (using cases) Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.1 1.2 1.2 R & growth factor (based on deaths)