Iran¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 07/03/2023 09:35:08 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview("Iran", weeks=5);
2023-03-07T09:35:12.790414 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 1 1 2 2 3 3 7-day incidence rate (per 100K people) Iran, last 5 weeks, last data point from 2023-03-06 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.00 0.25 0.50 0.75 1.00 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.000 0.005 0.010 0.015 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 1.0 1.0 1.5 1.5 R & growth factor (based on cases) Iran cases daily growth factor Iran cases daily growth factor (rolling mean) Iran estimated R (using cases) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 1.0 1.0 1.5 1.5 R & growth factor (based on deaths) Iran deaths daily growth factor Iran deaths daily growth factor (rolling mean) Iran estimated R (using deaths) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 20000 40000 60000 80000 cases doubling time [days] Iran doubling time cases (rolling mean) Iran doubling time deaths (rolling mean) 0 210 420 630 840 daily change Iran new cases (rolling 7d mean) Iran new cases 0.0 4.2 8.4 12.6 daily change Iran new deaths (rolling 7d mean) Iran new deaths 0 20000 40000 60000 80000 deaths doubling time [days]
In [4]:
overview("Iran");
2023-03-07T09:35:21.288060 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 0 100 100 200 200 300 300 7-day incidence rate (per 100K people) 3.5 Iran, last data point from 2023-03-06 Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 20 40 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0.0 0.2 0.4 0.6 0.8 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 1.0 1.0 1.5 1.5 R & growth factor (based on cases) Iran cases daily growth factor Iran cases daily growth factor (rolling mean) Iran estimated R (using cases) Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 1.0 1.0 1.5 1.5 R & growth factor (based on deaths) Iran deaths daily growth factor Iran deaths daily growth factor (rolling mean) Iran estimated R (using deaths) Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 50000 100000 150000 200000 cases doubling time [days] Iran doubling time cases (rolling mean) Iran doubling time deaths (rolling mean) 0 16799 33597 daily change Iran new cases (rolling 7d mean) Iran new cases 0 168 336 504 672 daily change Iran new deaths (rolling 7d mean) Iran new deaths 0 28436 56872 85308 113745 deaths doubling time [days]
In [5]:
compare_plot("Iran", normalise=True);
2023-03-07T09:35:25.750694 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 2020-01 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 2023-05 0.001 0.001 0.1 0.1 10 10 1000 1000 daily new cases per 100K people (rolling 7-day mean) Daily cases (top) and deaths (below) for Iran Iran Germany Australia Poland Korea, South Belarus Switzerland US 2020-01 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 2023-05 0.0001 0.0001 0.001 0.001 0.01 0.01 0.1 0.1 1 1 daily new deaths per 100K people (rolling 7-day mean) Iran Germany Australia Poland Korea, South Belarus Switzerland US
In [6]:
# load the data
cases, deaths = get_country_data("Iran")

# get population of the region for future normalisation:
inhabitants = population("Iran")
print(f'Population of "Iran": {inhabitants} people')

# compose into one table
table = compose_dataframe_summary(cases, deaths)

# show tables with up to 1000 rows
pd.set_option("display.max_rows", 1000)

# display the table
table
Population of "Iran": 83992953 people
Out[6]:
total cases daily new cases total deaths daily new deaths
2023-03-06 7570743 511 144902 9
2023-03-05 7570232 463 144893 15
2023-03-04 7569769 286 144878 11
2023-03-03 7569483 222 144867 3
2023-03-02 7569261 358 144864 6
... ... ... ... ...
2020-01-27 0 0 0 0
2020-01-26 0 0 0 0
2020-01-25 0 0 0 0
2020-01-24 0 0 0 0
2020-01-23 0 0 0 0

1139 rows × 4 columns

Explore the data in your web browser¶

  • If you want to execute this notebook, click here to use myBinder
  • and wait (~1 to 2 minutes)
  • Then press SHIFT+RETURN to advance code cell to code cell
  • See http://jupyter.org for more details on how to use Jupyter Notebook

Acknowledgements:¶

  • Johns Hopkins University provides data for countries
  • Robert Koch Institute provides data for within Germany
  • Atlo Team for gathering and providing data from Hungary (https://atlo.team/koronamonitor/)
  • Open source and scientific computing community for the data tools
  • Github for hosting repository and html files
  • Project Jupyter for the Notebook and binder service
  • The H2020 project Photon and Neutron Open Science Cloud (PaNOSC)

In [7]:
print(f"Download of data from Johns Hopkins university: cases at {fetch_cases_last_execution()} and "
      f"deaths at {fetch_deaths_last_execution()}.")
Download of data from Johns Hopkins university: cases at 07/03/2023 09:31:22 and deaths at 07/03/2023 09:31:21.
In [8]:
# to force a fresh download of data, run "clear_cache()"
In [9]:
print(f"Notebook execution took: {datetime.datetime.now()-start}")
Notebook execution took: 0:00:17.283646