Iran¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 26/01/2023 09:28:24 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview("Iran", weeks=5);
2023-01-26T09:28:28.060080 image/svg+xml Matplotlib v3.6.3, https://matplotlib.org/ 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.4 0.4 0.6 0.6 0.8 0.8 7-day incidence rate (per 100K people) 0.9 Iran, last 5 weeks, last data point from 2023-01-25 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.00 0.05 0.10 0.15 daily change normalised per 100K 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.000 0.002 0.004 0.006 0.008 daily change normalised per 100K 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.8 0.8 1.0 1.0 1.2 1.2 1.4 1.4 R & growth factor (based on cases) Iran cases daily growth factor Iran cases daily growth factor (rolling mean) Iran estimated R (using cases) 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.5 0.5 1.0 1.0 1.5 1.5 R & growth factor (based on deaths) Iran deaths daily growth factor Iran deaths daily growth factor (rolling mean) Iran estimated R (using deaths) 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0 50000 100000 150000 cases doubling time [days] Iran doubling time cases (rolling mean) Iran doubling time deaths (rolling mean) 0 42 84 126 daily change Iran new cases (rolling 7d mean) Iran new cases 0.00 1.68 3.36 5.04 6.72 daily change Iran new deaths (rolling 7d mean) Iran new deaths 0 32296 64593 96889 deaths doubling time [days]
In [4]:
overview("Iran");
2023-01-26T09:28:36.311946 image/svg+xml Matplotlib v3.6.3, https://matplotlib.org/ Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 0 100 100 200 200 300 300 7-day incidence rate (per 100K people) 0.9 Iran, last data point from 2023-01-25 Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 20 40 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.0 0.2 0.4 0.6 0.8 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.8 0.8 1.0 1.0 1.2 1.2 1.4 1.4 R & growth factor (based on cases)