India¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 26/01/2023 09:28:08 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview("India", weeks=5);
2023-01-26T09:28:11.344970 image/svg+xml Matplotlib v3.6.3, https://matplotlib.org/ 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.06 0.06 0.08 0.08 0.10 0.10 7-day incidence rate (per 100K people) 0.1 India, last 5 weeks, last data point from 2023-01-25 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.000 0.005 0.010 0.015 daily change normalised per 100K 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.0000 0.0002 0.0004 0.0006 daily change normalised per 100K 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases) India cases daily growth factor India cases daily growth factor (rolling mean) India estimated R (using cases) 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 R & growth factor (based on deaths) India deaths daily growth factor India deaths daily growth factor (rolling mean) India estimated R (using deaths) 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0 100000 200000 300000 cases doubling time [days] India doubling time cases (rolling mean) India doubling time deaths (rolling mean) 0 69 138 207 daily change India new cases (rolling 7d mean) India new cases 0.00 2.76 5.52 8.28 daily change India new deaths (rolling 7d mean) India new deaths 0 148935 297870 446805 deaths doubling time [days]
In [4]:
overview("India");
2023-01-26T09:28:19.350339 image/svg+xml Matplotlib v3.6.3, https://matplotlib.org/ Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 0 50 50 100 100 150 150 200 200 7-day incidence rate (per 100K people) 0.1 India, last data point from 2023-01-25 Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 10 20 30 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.0 0.2 0.4 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases) <