import datetime
import time
start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 07/03/2023 14:25:01 CEST
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
overview(country="Germany", subregion="SK Köln", weeks=5);
overview(country="Germany", subregion="SK Köln");
compare_plot(country="Germany", subregion="SK Köln", dates="2020-03-15:");
# load the data
cases, deaths = germany_get_region(landkreis="SK Köln")
# get population of the region for future normalisation:
inhabitants = population(country="Germany", subregion="SK Köln")
print(f'Population of country="Germany", subregion="SK Köln": {inhabitants} people')
# compose into one table
table = compose_dataframe_summary(cases, deaths)
# show tables with up to 1000 rows
pd.set_option("display.max_rows", 1000)
# display the table
table
Population of country="Germany", subregion="SK Köln": 1073096 people
total cases | daily new cases | total deaths | daily new deaths | |
---|---|---|---|---|
date | ||||
2023-03-06 | 512750 | 30 | 1231 | 0 |
2023-03-05 | 512720 | 20 | 1231 | 0 |
2023-03-04 | 512700 | 43 | 1231 | 0 |
2023-03-03 | 512657 | 180 | 1231 | 0 |
2023-03-02 | 512477 | 168 | 1231 | 2 |
... | ... | ... | ... | ... |
2020-03-04 | 14 | 2 | 0 | 0 |
2020-03-03 | 12 | 6 | 0 | 0 |
2020-03-02 | 6 | 1 | 0 | 0 |
2020-03-01 | 5 | 2 | 0 | 0 |
2020-02-29 | 3 | 2 | 0 | 0 |
1095 rows × 4 columns
print(f"Download of data from Johns Hopkins university: cases at {fetch_cases_last_execution()} and "
f"deaths at {fetch_deaths_last_execution()}.")
Download of data from Johns Hopkins university: cases at 07/03/2023 09:31:22 and deaths at 07/03/2023 09:31:21.
# to force a fresh download of data, run "clear_cache()"
print(f"Notebook execution took: {datetime.datetime.now()-start}")
Notebook execution took: 0:03:16.443690