import datetime
import time
start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 07/03/2023 14:17:40 CEST
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
overview(country="Germany", subregion="SK Duisburg", weeks=5);
overview(country="Germany", subregion="SK Duisburg");
compare_plot(country="Germany", subregion="SK Duisburg", dates="2020-03-15:");
# load the data
cases, deaths = germany_get_region(landkreis="SK Duisburg")
# get population of the region for future normalisation:
inhabitants = population(country="Germany", subregion="SK Duisburg")
print(f'Population of country="Germany", subregion="SK Duisburg": {inhabitants} people')
# compose into one table
table = compose_dataframe_summary(cases, deaths)
# show tables with up to 1000 rows
pd.set_option("display.max_rows", 1000)
# display the table
table
Population of country="Germany", subregion="SK Duisburg": 495152 people
total cases | daily new cases | total deaths | daily new deaths | |
---|---|---|---|---|
date | ||||
2023-03-06 | 161867 | 59 | 1073 | 0 |
2023-03-03 | 161808 | 23 | 1073 | 0 |
2023-03-02 | 161785 | 66 | 1073 | 0 |
2023-03-01 | 161719 | 83 | 1073 | 0 |
2023-02-28 | 161636 | 144 | 1073 | 0 |
... | ... | ... | ... | ... |
2020-03-12 | 10 | 1 | 0 | 0 |
2020-03-11 | 9 | 1 | 0 | 0 |
2020-03-10 | 8 | 5 | 0 | 0 |
2020-03-06 | 3 | 1 | 0 | 0 |
2020-03-04 | 2 | 1 | 0 | 0 |
1046 rows × 4 columns
print(f"Download of data from Johns Hopkins university: cases at {fetch_cases_last_execution()} and "
f"deaths at {fetch_deaths_last_execution()}.")
Download of data from Johns Hopkins university: cases at 07/03/2023 09:31:22 and deaths at 07/03/2023 09:31:21.
# to force a fresh download of data, run "clear_cache()"
print(f"Notebook execution took: {datetime.datetime.now()-start}")
Notebook execution took: 0:03:25.731065