Germany: SK Duisburg (Nordrhein-Westfalen)¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 07/03/2023 14:17:40 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview(country="Germany", subregion="SK Duisburg", weeks=5);
2023-03-07T14:17:54.987844 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 80 80 100 100 120 120 140 140 7-day incidence rate (per 100K people) 75.7 SK Duisburg, Germany, last 5 weeks, last data point from 2023-03-06 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 10 20 30 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.0 0.1 0.2 0.3 0.4 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases) Germany-SK Duisburg cases daily growth factor Germany-SK Duisburg cases daily growth factor (rolling mean) Germany-SK Duisburg estimated R (using cases) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 R & growth factor (based on deaths) Germany-SK Duisburg deaths daily growth factor Germany-SK Duisburg deaths daily growth factor (rolling mean) Germany-SK Duisburg estimated R (using deaths) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 1000 2000 3000 cases doubling time [days] Germany-SK Duisburg doubling time cases (rolling mean) 0.0 49.5 99.0 148.5 daily change Germany-SK Duisburg new cases (rolling 7d mean) Germany-SK Duisburg new cases 0.000 0.495 0.990 1.485 1.981 daily change Germany-SK Duisburg new deaths (rolling 7d mean) Germany-SK Duisburg new deaths 0.000 0.287 0.573 0.860
In [4]:
overview(country="Germany", subregion="SK Duisburg");
2023-03-07T14:18:12.686447 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 0 500 500 1000 1000 1500 1500 7-day incidence rate (per 100K people) 75.7 SK Duisburg, Germany, last data point from 2023-03-06 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 100 200 300 daily change normalised per 100K May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 1 2 daily change normalised per 100K May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases) Germany-SK Duisburg cases daily growth factor Germany-SK Duisburg cases daily growth factor (rolling mean) Germany-SK Duisburg estimated R (using cases) May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 R & growth factor (based on deaths) Germany-SK Duisburg deaths daily growth factor Germany-SK Duisburg deaths daily growth factor (rolling mean) Germany-SK Duisburg estimated R (using deaths) May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 2500 5000 7500 10000 cases doubling time [days] Germany-SK Duisburg doubling time cases (rolling mean) Germany-SK Duisburg doubling time deaths (rolling mean) 0 495 990 1485 daily change Germany-SK Duisburg new cases (rolling 7d mean) Germany-SK Duisburg new cases 0.00 4.95 9.90 daily change Germany-SK Duisburg new deaths (rolling 7d mean) Germany-SK Duisburg new deaths 0 285 569 854 1139 deaths doubling time [days]
In [5]:
compare_plot(country="Germany", subregion="SK Duisburg", dates="2020-03-15:");
2023-03-07T14:20:39.432214 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 0.1 0.1 1 1 10 10 100 100 daily new cases (rolling 7-day mean) normalised by 100K people Daily cases (top) and deaths (below) for Germany: SK Duisburg SK Duisburg Bayern Berlin Bremen Hamburg Hessen Nordrhein-Westfalen Sachsen-Anhalt 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 0.001 0.001 0.01 0.01 0.1 0.1 1 1 daily new deaths (rolling 7-day mean) normalised by 100K people SK Duisburg Bayern Berlin Bremen Hamburg Hessen Nordrhein-Westfalen Sachsen-Anhalt
In [6]:
# load the data
cases, deaths = germany_get_region(landkreis="SK Duisburg")

# get population of the region for future normalisation:
inhabitants = population(country="Germany", subregion="SK Duisburg")
print(f'Population of country="Germany", subregion="SK Duisburg": {inhabitants} people')

# compose into one table
table = compose_dataframe_summary(cases, deaths)

# show tables with up to 1000 rows
pd.set_option("display.max_rows", 1000)

# display the table
table
Population of country="Germany", subregion="SK Duisburg": 495152 people
Out[6]:
total cases daily new cases total deaths daily new deaths
date
2023-03-06 161867 59 1073 0
2023-03-03 161808 23 1073 0
2023-03-02 161785 66 1073 0
2023-03-01 161719 83 1073 0
2023-02-28 161636 144 1073 0
... ... ... ... ...
2020-03-12 10 1 0 0
2020-03-11 9 1 0 0
2020-03-10 8 5 0 0
2020-03-06 3 1 0 0
2020-03-04 2 1 0 0

1046 rows × 4 columns

Explore the data in your web browser¶

  • If you want to execute this notebook, click here to use myBinder
  • and wait (~1 to 2 minutes)
  • Then press SHIFT+RETURN to advance code cell to code cell
  • See http://jupyter.org for more details on how to use Jupyter Notebook

Acknowledgements:¶

  • Johns Hopkins University provides data for countries
  • Robert Koch Institute provides data for within Germany
  • Atlo Team for gathering and providing data from Hungary (https://atlo.team/koronamonitor/)
  • Open source and scientific computing community for the data tools
  • Github for hosting repository and html files
  • Project Jupyter for the Notebook and binder service
  • The H2020 project Photon and Neutron Open Science Cloud (PaNOSC)

In [7]:
print(f"Download of data from Johns Hopkins university: cases at {fetch_cases_last_execution()} and "
      f"deaths at {fetch_deaths_last_execution()}.")
Download of data from Johns Hopkins university: cases at 07/03/2023 09:31:22 and deaths at 07/03/2023 09:31:21.
In [8]:
# to force a fresh download of data, run "clear_cache()"
In [9]:
print(f"Notebook execution took: {datetime.datetime.now()-start}")
Notebook execution took: 0:03:25.731065