Germany: LK Wesel (Nordrhein-Westfalen)¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 07/03/2023 14:17:35 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview(country="Germany", subregion="LK Wesel", weeks=5);
2023-03-07T14:17:50.073197 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 50 50 100 100 150 150 7-day incidence rate (per 100K people) 48.9 LK Wesel, Germany, last 5 weeks, last data point from 2023-03-06 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 10 20 30 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar −0.050 −0.050 −0.025 −0.025 0.000 0.000 0.025 0.025 0.050 0.050 daily change Germany-LK Wesel new deaths (rolling 7d mean) Germany-LK Wesel new deaths 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases) Germany-LK Wesel cases daily growth factor Germany-LK Wesel cases daily growth factor (rolling mean) Germany-LK Wesel estimated R (using cases) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.1 1.2 1.2 R & growth factor (based on deaths) Germany-LK Wesel deaths daily growth factor Germany-LK Wesel deaths daily growth factor (rolling mean) Germany-LK Wesel estimated R (using deaths) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 2000 4000 6000 cases doubling time [days] Germany-LK Wesel doubling time cases (rolling mean) 0.0 46.0 92.1 138.1 daily change Germany-LK Wesel new cases (rolling 7d mean) Germany-LK Wesel new cases 0.000 0.286 0.571 0.857
In [4]:
overview(country="Germany", subregion="LK Wesel");
2023-03-07T14:18:11.136434 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 0 500 500 1000 1000 1500 1500 7-day incidence rate (per 100K people) 48.9 LK Wesel, Germany, last data point from 2023-03-06 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 100 200 300 daily change normalised per 100K May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.0 0.5 1.0 1.5 daily change normalised per 100K May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases) Germany-LK Wesel cases daily growth factor Germany-LK Wesel cases daily growth factor (rolling mean) Germany-LK Wesel estimated R (using cases) May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.1 1.2 1.2 R & growth factor (based on deaths) Germany-LK Wesel deaths daily growth factor Germany-LK Wesel deaths daily growth factor (rolling mean) Germany-LK Wesel estimated R (using deaths) May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 2500 5000 7500 10000 cases doubling time [days] Germany-LK Wesel doubling time cases (rolling mean) Germany-LK Wesel doubling time deaths (rolling mean) 0 460 921 1381 daily change Germany-LK Wesel new cases (rolling 7d mean) Germany-LK Wesel new cases 0.000 2.302 4.604 6.906 daily change Germany-LK Wesel new deaths (rolling 7d mean) Germany-LK Wesel new deaths 0.0 124.9 249.8 374.7 499.6 deaths doubling time [days]
In [5]:
compare_plot(country="Germany", subregion="LK Wesel", dates="2020-03-15:");
2023-03-07T14:20:20.882849 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 0.1 0.1 1 1 10 10 100 100 daily new cases (rolling 7-day mean) normalised by 100K people Daily cases (top) and deaths (below) for Germany: LK Wesel LK Wesel Bayern Berlin Bremen Hamburg Hessen Nordrhein-Westfalen Sachsen-Anhalt 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 0.001 0.001 0.01 0.01 0.1 0.1 1 1 daily new deaths (rolling 7-day mean) normalised by 100K people LK Wesel Bayern Berlin Bremen Hamburg Hessen Nordrhein-Westfalen Sachsen-Anhalt
In [6]:
# load the data
cases, deaths = germany_get_region(landkreis="LK Wesel")

# get population of the region for future normalisation:
inhabitants = population(country="Germany", subregion="LK Wesel")
print(f'Population of country="Germany", subregion="LK Wesel": {inhabitants} people')

# compose into one table
table = compose_dataframe_summary(cases, deaths)

# show tables with up to 1000 rows
pd.set_option("display.max_rows", 1000)

# display the table
table
Population of country="Germany", subregion="LK Wesel": 460433 people
Out[6]:
total cases daily new cases total deaths daily new deaths
date
2023-03-03 196961 12 572 0
2023-03-02 196949 24 572 0
2023-03-01 196925 90 572 0
2023-02-28 196835 99 572 0
2023-02-27 196736 147 572 0
... ... ... ... ...
2020-03-13 26 9 0 0
2020-03-12 17 7 0 0
2020-03-11 10 3 0 0
2020-03-10 7 5 0 0
2020-03-09 2 1 0 0

1067 rows × 4 columns

Explore the data in your web browser¶

  • If you want to execute this notebook, click here to use myBinder
  • and wait (~1 to 2 minutes)
  • Then press SHIFT+RETURN to advance code cell to code cell
  • See http://jupyter.org for more details on how to use Jupyter Notebook

Acknowledgements:¶

  • Johns Hopkins University provides data for countries
  • Robert Koch Institute provides data for within Germany
  • Atlo Team for gathering and providing data from Hungary (https://atlo.team/koronamonitor/)
  • Open source and scientific computing community for the data tools
  • Github for hosting repository and html files
  • Project Jupyter for the Notebook and binder service
  • The H2020 project Photon and Neutron Open Science Cloud (PaNOSC)

In [7]:
print(f"Download of data from Johns Hopkins university: cases at {fetch_cases_last_execution()} and "
      f"deaths at {fetch_deaths_last_execution()}.")
Download of data from Johns Hopkins university: cases at 07/03/2023 09:31:22 and deaths at 07/03/2023 09:31:21.
In [8]:
# to force a fresh download of data, run "clear_cache()"
In [9]:
print(f"Notebook execution took: {datetime.datetime.now()-start}")
Notebook execution took: 0:02:58.269604