Germany: LK Rhein-Kreis Neuss (Nordrhein-Westfalen)¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 07/03/2023 14:09:53 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview(country="Germany", subregion="LK Rhein-Kreis Neuss", weeks=5);
2023-03-07T14:10:04.890706 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 100 100 150 150 200 200 250 250 7-day incidence rate (per 100K people) 92.8 LK Rhein-Kreis Neuss, Germany, last 5 weeks, last data point from 2023-03-06 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 20 40 60 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.0 0.1 0.2 0.3 0.4 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.50 0.50 0.75 0.75 1.00 1.00 1.25 1.25 1.50 1.50 R & growth factor (based on cases) Germany-LK Rhein-Kreis Neuss cases daily growth factor Germany-LK Rhein-Kreis Neuss cases daily growth factor (rolling mean) Germany-LK Rhein-Kreis Neuss estimated R (using cases) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.0 0.0 0.5 0.5 1.0 1.0 R & growth factor (based on deaths) Germany-LK Rhein-Kreis Neuss deaths daily growth factor Germany-LK Rhein-Kreis Neuss deaths daily growth factor (rolling mean) Germany-LK Rhein-Kreis Neuss estimated R (using deaths) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 1000 2000 3000 cases doubling time [days] Germany-LK Rhein-Kreis Neuss doubling time cases (rolling mean) Germany-LK Rhein-Kreis Neuss doubling time deaths (rolling mean) 0.0 90.5 181.0 271.5 daily change Germany-LK Rhein-Kreis Neuss new cases (rolling 7d mean) Germany-LK Rhein-Kreis Neuss new cases 0.000 0.452 0.905 1.357 1.810 daily change Germany-LK Rhein-Kreis Neuss new deaths (rolling 7d mean) Germany-LK Rhein-Kreis Neuss new deaths 0.0 208.7 417.4 626.1 deaths doubling time [days]
In [4]:
overview(country="Germany", subregion="LK Rhein-Kreis Neuss");
2023-03-07T14:10:21.507202 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 0 500 500 1000 1000 1500 1500 2000 2000 7-day incidence rate (per 100K people) 92.8 LK Rhein-Kreis Neuss, Germany, last data point from 2023-03-06 Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 100 200 300 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.0 0.5 1.0 1.5 2.0 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.50 0.50 0.75 0.75 1.00 1.00 1.25 1.25 1.50 1.50 R & growth factor (based on cases) Germany-LK Rhein-Kreis Neuss cases daily growth factor Germany-LK Rhein-Kreis Neuss cases daily growth factor (rolling mean) Germany-LK Rhein-Kreis Neuss estimated R (using cases) Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.0 0.0 0.5 0.5 1.0 1.0 R & growth factor (based on deaths) Germany-LK Rhein-Kreis Neuss deaths daily growth factor Germany-LK Rhein-Kreis Neuss deaths daily growth factor (rolling mean) Germany-LK Rhein-Kreis Neuss estimated R (using deaths) Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 1000 2000 3000 cases doubling time [days] Germany-LK Rhein-Kreis Neuss doubling time cases (rolling mean) Germany-LK Rhein-Kreis Neuss doubling time deaths (rolling mean) 0 452 905 1357 daily change Germany-LK Rhein-Kreis Neuss new cases (rolling 7d mean) Germany-LK Rhein-Kreis Neuss new cases 0.00 2.26 4.52 6.79 9.05 daily change Germany-LK Rhein-Kreis Neuss new deaths (rolling 7d mean) Germany-LK Rhein-Kreis Neuss new deaths 0.0 207.2 414.5 621.7 deaths doubling time [days]
In [5]:
compare_plot(country="Germany", subregion="LK Rhein-Kreis Neuss", dates="2020-03-15:");
2023-03-07T14:12:39.397359 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 0.1 0.1 1 1 10 10 100 100 daily new cases (rolling 7-day mean) normalised by 100K people Daily cases (top) and deaths (below) for Germany: LK Rhein-Kreis Neuss LK Rhein-Kreis Neuss Bayern Berlin Bremen Hamburg Hessen Nordrhein-Westfalen Sachsen-Anhalt 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 0.001 0.001 0.01 0.01 0.1 0.1 1 1 daily new deaths (rolling 7-day mean) normalised by 100K people LK Rhein-Kreis Neuss Bayern Berlin Bremen Hamburg Hessen Nordrhein-Westfalen Sachsen-Anhalt
In [6]:
# load the data
cases, deaths = germany_get_region(landkreis="LK Rhein-Kreis Neuss")

# get population of the region for future normalisation:
inhabitants = population(country="Germany", subregion="LK Rhein-Kreis Neuss")
print(f'Population of country="Germany", subregion="LK Rhein-Kreis Neuss": {inhabitants} people')

# compose into one table
table = compose_dataframe_summary(cases, deaths)

# show tables with up to 1000 rows
pd.set_option("display.max_rows", 1000)

# display the table
table
Population of country="Germany", subregion="LK Rhein-Kreis Neuss": 452496 people
Out[6]:
total cases daily new cases total deaths daily new deaths
date
2023-03-06 193699 9 790 0
2023-03-05 193690 15 790 0
2023-03-04 193675 27 790 0
2023-03-03 193648 59 790 0
2023-03-02 193589 55 790 0
... ... ... ... ...
2020-03-11 11 4 0 0
2020-03-10 7 1 0 0
2020-03-04 6 3 0 0
2020-03-03 3 1 0 0
2020-03-02 2 1 0 0

1080 rows × 4 columns

Explore the data in your web browser¶

  • If you want to execute this notebook, click here to use myBinder
  • and wait (~1 to 2 minutes)
  • Then press SHIFT+RETURN to advance code cell to code cell
  • See http://jupyter.org for more details on how to use Jupyter Notebook

Acknowledgements:¶

  • Johns Hopkins University provides data for countries
  • Robert Koch Institute provides data for within Germany
  • Atlo Team for gathering and providing data from Hungary (https://atlo.team/koronamonitor/)
  • Open source and scientific computing community for the data tools
  • Github for hosting repository and html files
  • Project Jupyter for the Notebook and binder service
  • The H2020 project Photon and Neutron Open Science Cloud (PaNOSC)

In [7]:
print(f"Download of data from Johns Hopkins university: cases at {fetch_cases_last_execution()} and "
      f"deaths at {fetch_deaths_last_execution()}.")
Download of data from Johns Hopkins university: cases at 07/03/2023 09:31:22 and deaths at 07/03/2023 09:31:21.
In [8]:
# to force a fresh download of data, run "clear_cache()"
In [9]:
print(f"Notebook execution took: {datetime.datetime.now()-start}")
Notebook execution took: 0:03:39.908103