Germany: LK Gütersloh (Nordrhein-Westfalen)¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 07/03/2023 13:54:01 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview(country="Germany", subregion="LK Gütersloh", weeks=5);
2023-03-07T13:54:14.163436 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 60 60 80 80 100 100 120 120 140 140 7-day incidence rate (per 100K people) 56.0 LK Gütersloh, Germany, last 5 weeks, last data point from 2023-03-06 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 10 20 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.0 0.1 0.2 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases) Germany-LK Gütersloh cases daily growth factor Germany-LK Gütersloh cases daily growth factor (rolling mean) Germany-LK Gütersloh estimated R (using cases) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5 R & growth factor (based on deaths) Germany-LK Gütersloh deaths daily growth factor Germany-LK Gütersloh deaths daily growth factor (rolling mean) Germany-LK Gütersloh estimated R (using deaths) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 2000 4000 6000 cases doubling time [days] Germany-LK Gütersloh doubling time cases (rolling mean) 0.0 36.6 73.2 daily change Germany-LK Gütersloh new cases (rolling 7d mean) Germany-LK Gütersloh new cases 0.000 0.366 0.732 daily change Germany-LK Gütersloh new deaths (rolling 7d mean) Germany-LK Gütersloh new deaths 0.000 0.289 0.577 0.866
In [4]:
overview(country="Germany", subregion="LK Gütersloh");
2023-03-07T13:54:30.485468 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 0 500 500 1000 1000 1500 1500 2000 2000 7-day incidence rate (per 100K people) 56.0 LK Gütersloh, Germany, last data point from 2023-03-06 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 100 200 300 400 daily change normalised per 100K May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 1 2 3 4 daily change normalised per 100K May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases) Germany-LK Gütersloh cases daily growth factor Germany-LK Gütersloh cases daily growth factor (rolling mean) Germany-LK Gütersloh estimated R (using cases) May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5 R & growth factor (based on deaths) Germany-LK Gütersloh deaths daily growth factor Germany-LK Gütersloh deaths daily growth factor (rolling mean) Germany-LK Gütersloh estimated R (using deaths) May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 5000 10000 15000 20000 cases doubling time [days] Germany-LK Gütersloh doubling time cases (rolling mean) Germany-LK Gütersloh doubling time deaths (rolling mean) 0 366 732 1098 1464 daily change Germany-LK Gütersloh new cases (rolling 7d mean) Germany-LK Gütersloh new cases 0.00 3.66 7.32 10.98 14.64 daily change Germany-LK Gütersloh new deaths (rolling 7d mean) Germany-LK Gütersloh new deaths 0.0 124.2 248.4 372.6 496.8 deaths doubling time [days]
In [5]:
compare_plot(country="Germany", subregion="LK Gütersloh", dates="2020-03-15:");
2023-03-07T13:56:44.285703 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 0.1 0.1 1 1 10 10 100 100 daily new cases (rolling 7-day mean) normalised by 100K people Daily cases (top) and deaths (below) for Germany: LK Gütersloh LK Gütersloh Bayern Berlin Bremen Hamburg Hessen Nordrhein-Westfalen Sachsen-Anhalt 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 0.001 0.001 0.01 0.01 0.1 0.1 1 1 daily new deaths (rolling 7-day mean) normalised by 100K people LK Gütersloh Bayern Berlin Bremen Hamburg Hessen Nordrhein-Westfalen Sachsen-Anhalt
In [6]:
# load the data
cases, deaths = germany_get_region(landkreis="LK Gütersloh")

# get population of the region for future normalisation:
inhabitants = population(country="Germany", subregion="LK Gütersloh")
print(f'Population of country="Germany", subregion="LK Gütersloh": {inhabitants} people')

# compose into one table
table = compose_dataframe_summary(cases, deaths)

# show tables with up to 1000 rows
pd.set_option("display.max_rows", 1000)

# display the table
table
Population of country="Germany", subregion="LK Gütersloh": 366104 people
Out[6]:
total cases daily new cases total deaths daily new deaths
date
2023-03-06 182912 1 555 0
2023-03-05 182911 12 555 0
2023-03-04 182899 12 555 0
2023-03-03 182887 23 555 0
2023-03-02 182864 27 555 0
... ... ... ... ...
2020-03-16 74 31 1 0
2020-03-15 43 12 1 1
2020-03-14 31 2 0 0
2020-03-13 29 20 0 0
2020-03-12 9 3 0 0

1065 rows × 4 columns

Explore the data in your web browser¶

  • If you want to execute this notebook, click here to use myBinder
  • and wait (~1 to 2 minutes)
  • Then press SHIFT+RETURN to advance code cell to code cell
  • See http://jupyter.org for more details on how to use Jupyter Notebook

Acknowledgements:¶

  • Johns Hopkins University provides data for countries
  • Robert Koch Institute provides data for within Germany
  • Atlo Team for gathering and providing data from Hungary (https://atlo.team/koronamonitor/)
  • Open source and scientific computing community for the data tools
  • Github for hosting repository and html files
  • Project Jupyter for the Notebook and binder service
  • The H2020 project Photon and Neutron Open Science Cloud (PaNOSC)

In [7]:
print(f"Download of data from Johns Hopkins university: cases at {fetch_cases_last_execution()} and "
      f"deaths at {fetch_deaths_last_execution()}.")
Download of data from Johns Hopkins university: cases at 07/03/2023 09:31:22 and deaths at 07/03/2023 09:31:21.
In [8]:
# to force a fresh download of data, run "clear_cache()"
In [9]:
print(f"Notebook execution took: {datetime.datetime.now()-start}")
Notebook execution took: 0:03:12.969076