Germany: SK Frankfurt am Main (Hessen)¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 07/03/2023 12:52:04 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview(country="Germany", subregion="SK Frankfurt am Main", weeks=5);
2023-03-07T12:52:17.924058 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 80 80 100 100 120 120 7-day incidence rate (per 100K people) 72.4 SK Frankfurt am Main, Germany, last 5 weeks, last data point from 2023-03-06 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 10 20 30 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.00 0.05 0.10 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases) Germany-SK Frankfurt am Main cases daily growth factor Germany-SK Frankfurt am Main cases daily growth factor (rolling mean) Germany-SK Frankfurt am Main estimated R (using cases) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 0 1 1 2 2 3 3 4 4 R & growth factor (based on deaths) Germany-SK Frankfurt am Main deaths daily growth factor Germany-SK Frankfurt am Main deaths daily growth factor (rolling mean) Germany-SK Frankfurt am Main estimated R (using deaths) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 1000 2000 3000 4000 cases doubling time [days] Germany-SK Frankfurt am Main doubling time cases (rolling mean) 0.0 75.9 151.8 227.8 daily change Germany-SK Frankfurt am Main new cases (rolling 7d mean) Germany-SK Frankfurt am Main new cases 0.000 0.380 0.759 daily change Germany-SK Frankfurt am Main new deaths (rolling 7d mean) Germany-SK Frankfurt am Main new deaths 0.000 0.209 0.418 0.627 0.836
In [4]:
overview(country="Germany", subregion="SK Frankfurt am Main");
2023-03-07T12:52:34.211138 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 0 1000 1000 2000 2000 7-day incidence rate (per 100K people) 72.4 SK Frankfurt am Main, Germany, last data point from 2023-03-06 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 100 200 300 daily change normalised per 100K May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.0 0.5 1.0 1.5 daily change normalised per 100K May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases) Germany-SK Frankfurt am Main cases daily growth factor Germany-SK Frankfurt am Main cases daily growth factor (rolling mean) Germany-SK Frankfurt am Main estimated R (using cases) May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 0 1 1 2 2 3 3 4 4 R & growth factor (based on deaths) Germany-SK Frankfurt am Main deaths daily growth factor Germany-SK Frankfurt am Main deaths daily growth factor (rolling mean) Germany-SK Frankfurt am Main estimated R (using deaths) May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 2000 4000 cases doubling time [days] Germany-SK Frankfurt am Main doubling time cases (rolling mean) Germany-SK Frankfurt am Main doubling time deaths (rolling mean) 0 759 1518 2278 daily change Germany-SK Frankfurt am Main new cases (rolling 7d mean) Germany-SK Frankfurt am Main new cases 0.00 3.80 7.59 11.39 daily change Germany-SK Frankfurt am Main new deaths (rolling 7d mean) Germany-SK Frankfurt am Main new deaths 0 717 1434 deaths doubling time [days]
In [5]:
compare_plot(country="Germany", subregion="SK Frankfurt am Main", dates="2020-03-15:");
2023-03-07T12:55:05.122272 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 0.1 0.1 1 1 10 10 100 100 daily new cases (rolling 7-day mean) normalised by 100K people Daily cases (top) and deaths (below) for Germany: SK Frankfurt am Main SK Frankfurt am Main Bayern Berlin Bremen Hamburg Hessen Nordrhein-Westfalen Sachsen-Anhalt 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 0.001 0.001 0.01 0.01 0.1 0.1 1 1 daily new deaths (rolling 7-day mean) normalised by 100K people SK Frankfurt am Main Bayern Berlin Bremen Hamburg Hessen Nordrhein-Westfalen Sachsen-Anhalt
In [6]:
# load the data
cases, deaths = germany_get_region(landkreis="SK Frankfurt am Main")

# get population of the region for future normalisation:
inhabitants = population(country="Germany", subregion="SK Frankfurt am Main")
print(f'Population of country="Germany", subregion="SK Frankfurt am Main": {inhabitants} people')

# compose into one table
table = compose_dataframe_summary(cases, deaths)

# show tables with up to 1000 rows
pd.set_option("display.max_rows", 1000)

# display the table
table
Population of country="Germany", subregion="SK Frankfurt am Main": 759224 people
Out[6]:
total cases daily new cases total deaths daily new deaths
date
2023-03-06 334012 36 1595 0
2023-03-03 333976 72 1595 0
2023-03-02 333904 67 1595 0
2023-03-01 333837 152 1595 0
2023-02-28 333685 223 1595 0
... ... ... ... ...
2020-03-11 13 3 0 0
2020-03-10 10 3 0 0
2020-03-09 7 1 0 0
2020-03-05 6 2 0 0
2020-03-04 4 1 0 0

1029 rows × 4 columns

Explore the data in your web browser¶

  • If you want to execute this notebook, click here to use myBinder
  • and wait (~1 to 2 minutes)
  • Then press SHIFT+RETURN to advance code cell to code cell
  • See http://jupyter.org for more details on how to use Jupyter Notebook

Acknowledgements:¶

  • Johns Hopkins University provides data for countries
  • Robert Koch Institute provides data for within Germany
  • Atlo Team for gathering and providing data from Hungary (https://atlo.team/koronamonitor/)
  • Open source and scientific computing community for the data tools
  • Github for hosting repository and html files
  • Project Jupyter for the Notebook and binder service
  • The H2020 project Photon and Neutron Open Science Cloud (PaNOSC)

In [7]:
print(f"Download of data from Johns Hopkins university: cases at {fetch_cases_last_execution()} and "
      f"deaths at {fetch_deaths_last_execution()}.")
Download of data from Johns Hopkins university: cases at 07/03/2023 09:31:22 and deaths at 07/03/2023 09:31:21.
In [8]:
# to force a fresh download of data, run "clear_cache()"
In [9]:
print(f"Notebook execution took: {datetime.datetime.now()-start}")
Notebook execution took: 0:03:10.922059