Germany: SK Berlin Neukölln (Berlin)¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 07/03/2023 12:06:07 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview(country="Germany", subregion="SK Berlin Neukölln", weeks=5);
2023-03-07T12:06:22.091100 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 40 40 50 50 60 60 70 70 7-day incidence rate (per 100K people) 55.0 SK Berlin Neukölln, Germany, last 5 weeks, last data point from 2023-03-06 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 5 10 15 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar −0.050 −0.050 −0.025 −0.025 0.000 0.000 0.025 0.025 0.050 0.050 daily change Germany-SK Berlin Neukölln new deaths (rolling 7d mean) Germany-SK Berlin Neukölln new deaths 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases) Germany-SK Berlin Neukölln cases daily growth factor Germany-SK Berlin Neukölln cases daily growth factor (rolling mean) Germany-SK Berlin Neukölln estimated R (using cases) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.1 1.2 1.2 R & growth factor (based on deaths) Germany-SK Berlin Neukölln deaths daily growth factor Germany-SK Berlin Neukölln deaths daily growth factor (rolling mean) Germany-SK Berlin Neukölln estimated R (using deaths) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 2000 4000 6000 cases doubling time [days] Germany-SK Berlin Neukölln doubling time cases (rolling mean) 0.00 16.01 32.02 48.03 daily change Germany-SK Berlin Neukölln new cases (rolling 7d mean) Germany-SK Berlin Neukölln new cases 0.000 0.284 0.569 0.853
In [4]:
overview(country="Germany", subregion="SK Berlin Neukölln");
2023-03-07T12:06:41.866342 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 0 1000 1000 2000 2000 3000 3000 7-day incidence rate (per 100K people) 55.0 SK Berlin Neukölln, Germany, last data point from 2023-03-06 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 200 400 daily change normalised per 100K May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 1 2 3 4 daily change normalised per 100K May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases) Germany-SK Berlin Neukölln cases daily growth factor Germany-SK Berlin Neukölln cases daily growth factor (rolling mean) Germany-SK Berlin Neukölln estimated R (using cases) May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.1 1.2 1.2 R & growth factor (based on deaths) Germany-SK Berlin Neukölln deaths daily growth factor Germany-SK Berlin Neukölln deaths daily growth factor (rolling mean) Germany-SK Berlin Neukölln estimated R (using deaths) May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 2000 4000 6000 8000 cases doubling time [days] Germany-SK Berlin Neukölln doubling time cases (rolling mean) Germany-SK Berlin Neukölln doubling time deaths (rolling mean) 0 640 1281 daily change Germany-SK Berlin Neukölln new cases (rolling 7d mean) Germany-SK Berlin Neukölln new cases 0.00 3.20 6.40 9.61 12.81 daily change Germany-SK Berlin Neukölln new deaths (rolling 7d mean) Germany-SK Berlin Neukölln new deaths 0 201 401 602 803 deaths doubling time [days]
In [5]:
compare_plot(country="Germany", subregion="SK Berlin Neukölln", dates="2020-03-15:");
2023-03-07T12:08:48.886449 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 0.1 0.1 1 1 10 10 100 100 daily new cases (rolling 7-day mean) normalised by 100K people Daily cases (top) and deaths (below) for Germany: SK Berlin Neukölln SK Berlin Neukölln Bayern Berlin Bremen Hamburg Hessen Nordrhein-Westfalen Sachsen-Anhalt 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 0.001 0.001 0.01 0.01 0.1 0.1 1 1 daily new deaths (rolling 7-day mean) normalised by 100K people SK Berlin Neukölln Bayern Berlin Bremen Hamburg Hessen Nordrhein-Westfalen Sachsen-Anhalt
In [6]:
# load the data
cases, deaths = germany_get_region(landkreis="SK Berlin Neukölln")

# get population of the region for future normalisation:
inhabitants = population(country="Germany", subregion="SK Berlin Neukölln")
print(f'Population of country="Germany", subregion="SK Berlin Neukölln": {inhabitants} people')

# compose into one table
table = compose_dataframe_summary(cases, deaths)

# show tables with up to 1000 rows
pd.set_option("display.max_rows", 1000)

# display the table
table
Population of country="Germany", subregion="SK Berlin Neukölln": 320204 people
Out[6]:
total cases daily new cases total deaths daily new deaths
date
2023-03-06 127656 18 568 0
2023-03-05 127638 11 568 0
2023-03-04 127627 7 568 0
2023-03-03 127620 18 568 0
2023-03-02 127602 16 568 0
... ... ... ... ...
2020-03-12 16 7 0 0
2020-03-11 9 4 0 0
2020-03-10 5 1 0 0
2020-03-09 4 2 0 0
2020-03-03 2 1 0 0

1002 rows × 4 columns

Explore the data in your web browser¶

  • If you want to execute this notebook, click here to use myBinder
  • and wait (~1 to 2 minutes)
  • Then press SHIFT+RETURN to advance code cell to code cell
  • See http://jupyter.org for more details on how to use Jupyter Notebook

Acknowledgements:¶

  • Johns Hopkins University provides data for countries
  • Robert Koch Institute provides data for within Germany
  • Atlo Team for gathering and providing data from Hungary (https://atlo.team/koronamonitor/)
  • Open source and scientific computing community for the data tools
  • Github for hosting repository and html files
  • Project Jupyter for the Notebook and binder service
  • The H2020 project Photon and Neutron Open Science Cloud (PaNOSC)

In [7]:
print(f"Download of data from Johns Hopkins university: cases at {fetch_cases_last_execution()} and "
      f"deaths at {fetch_deaths_last_execution()}.")
Download of data from Johns Hopkins university: cases at 07/03/2023 09:31:22 and deaths at 07/03/2023 09:31:21.
In [8]:
# to force a fresh download of data, run "clear_cache()"
In [9]:
print(f"Notebook execution took: {datetime.datetime.now()-start}")
Notebook execution took: 0:02:55.976557