Chile¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 07/03/2023 09:32:54 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview("Chile", weeks=5);
2023-03-07T09:32:58.664952 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 60 60 70 70 80 80 90 90 7-day incidence rate (per 100K people) Chile, last 5 weeks, last data point from 2023-03-06 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 5 10 15 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.00 0.05 0.10 0.15 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases) Chile cases daily growth factor Chile cases daily growth factor (rolling mean) Chile estimated R (using cases) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on deaths) Chile deaths daily growth factor Chile deaths daily growth factor (rolling mean) Chile estimated R (using deaths) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 1000 2000 3000 cases doubling time [days] Chile doubling time cases (rolling mean) Chile doubling time deaths (rolling mean) 0 956 1912 2867 daily change Chile new cases (rolling 7d mean) Chile new cases 0.00 9.56 19.12 28.67 daily change Chile new deaths (rolling 7d mean) Chile new deaths 0 2069 4138 6207 deaths doubling time [days]
In [4]:
overview("Chile");
2023-03-07T09:33:07.655069 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 0 500 500 1000 1000 7-day incidence rate (per 100K people) 91.2 Chile, last data point from 2023-03-06 Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 50 100 150 200 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 20 40 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on cases) Chile cases daily growth factor Chile cases daily growth factor (rolling mean) Chile estimated R (using cases) Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0.8 0.8 1.0 1.0 1.2 1.2 R & growth factor (based on deaths) Chile deaths daily growth factor Chile deaths daily growth factor (rolling mean) Chile estimated R (using deaths) Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 2000 4000 6000 8000 cases doubling time [days] Chile doubling time cases (rolling mean) Chile doubling time deaths (rolling mean) 0 9558 19116 28674 38232 daily change Chile new cases (rolling 7d mean) Chile new cases 0 3823 7646 daily change Chile new deaths (rolling 7d mean) Chile new deaths 0 6767 13534 20300 27067 deaths doubling time [days]
In [5]:
compare_plot("Chile", normalise=True);
2023-03-07T09:33:11.944898 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 2020-01 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 2023-05 0.001 0.001 0.1 0.1 10 10 1000 1000 daily new cases per 100K people (rolling 7-day mean) Daily cases (top) and deaths (below) for Chile Chile Germany Australia Poland Korea, South Belarus Switzerland US 2020-01 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 2023-05 0.0001 0.0001 0.001 0.001 0.01 0.01 0.1 0.1 1 1 10 10 daily new deaths per 100K people (rolling 7-day mean) Chile Germany Australia Poland Korea, South Belarus Switzerland US
In [6]:
# load the data
cases, deaths = get_country_data("Chile")

# get population of the region for future normalisation:
inhabitants = population("Chile")
print(f'Population of "Chile": {inhabitants} people')

# compose into one table
table = compose_dataframe_summary(cases, deaths)

# show tables with up to 1000 rows
pd.set_option("display.max_rows", 1000)

# display the table
table
Population of "Chile": 19116209 people
Out[6]:
total cases daily new cases total deaths daily new deaths
2023-03-06 5182360 2031 64247 17
2023-03-05 5180329 2559 64230 8
2023-03-04 5177770 2819 64222 12
2023-03-03 5174951 2861 64210 13
2023-03-02 5172090 2951 64197 20
... ... ... ... ...
2020-01-27 0 0 0 0
2020-01-26 0 0 0 0
2020-01-25 0 0 0 0
2020-01-24 0 0 0 0
2020-01-23 0 0 0 0

1139 rows × 4 columns

Explore the data in your web browser¶

  • If you want to execute this notebook, click here to use myBinder
  • and wait (~1 to 2 minutes)
  • Then press SHIFT+RETURN to advance code cell to code cell
  • See http://jupyter.org for more details on how to use Jupyter Notebook

Acknowledgements:¶

  • Johns Hopkins University provides data for countries
  • Robert Koch Institute provides data for within Germany
  • Atlo Team for gathering and providing data from Hungary (https://atlo.team/koronamonitor/)
  • Open source and scientific computing community for the data tools
  • Github for hosting repository and html files
  • Project Jupyter for the Notebook and binder service
  • The H2020 project Photon and Neutron Open Science Cloud (PaNOSC)

In [7]:
print(f"Download of data from Johns Hopkins university: cases at {fetch_cases_last_execution()} and "
      f"deaths at {fetch_deaths_last_execution()}.")
Download of data from Johns Hopkins university: cases at 07/03/2023 09:31:22 and deaths at 07/03/2023 09:31:21.
In [8]:
# to force a fresh download of data, run "clear_cache()"
In [9]:
print(f"Notebook execution took: {datetime.datetime.now()-start}")
Notebook execution took: 0:00:17.930932