Burma¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 26/01/2023 09:26:00 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview("Burma", weeks=5);
2023-01-26T09:26:04.196376 image/svg+xml Matplotlib v3.6.3, https://matplotlib.org/ 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.06 0.06 0.08 0.08 0.10 0.10 0.12 0.12 0.14 0.14 7-day incidence rate (per 100K people) 0.1 Burma, last 5 weeks, last data point from 2023-01-25 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.00 0.01 0.02 0.03 0.04 daily change normalised per 100K 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.0000 0.0005 0.0010 0.0015 daily change normalised per 100K 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.5 0.5 1.0 1.0 1.5 1.5 R & growth factor (based on cases) Burma cases daily growth factor Burma cases daily growth factor (rolling mean) Burma estimated R (using cases) 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0.0 0.0 0.5 0.5 1.0 1.0 R & growth factor (based on deaths) Burma deaths daily growth factor Burma deaths daily growth factor (rolling mean) Burma estimated R (using deaths) 26 Dec 02 Jan 09 Jan 16 Jan 23 Jan 0 50000 100000 150000 cases doubling time [days] Burma doubling time cases (rolling mean) 0.00 5.44 10.88 16.32 21.76 daily change Burma new cases (rolling 7d mean) Burma new cases 0.000 0.272 0.544 0.816 daily change Burma new deaths (rolling 7d mean) Burma new deaths 0.000 0.321 0.641 0.962
In [4]:
overview("Burma");
2023-01-26T09:26:11.729672 image/svg+xml Matplotlib v3.6.3, https://matplotlib.org/ Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 0 20 20 40 40 60 60 7-day incidence rate (per 100K people) 0.1 Burma, last data point from 2023-01-25 Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0 5 10 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.0 0.2 0.4 0.6 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.5 0.5 1.0 1.0 1.5 1.5 R & growth factor (based on cases) Burma cases daily growth factor Burma cases daily growth factor (rolling mean) Burma estimated R (using cases) Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 0.0 0.0 0.5 0.5 1.0 1.0 R & growth factor (based on deaths)