Austria¶

  • Homepage of project: https://oscovida.github.io
  • Plots are explained at http://oscovida.github.io/plots.html
  • Execute this Jupyter Notebook using myBinder
In [1]:
import datetime
import time

start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
Notebook executed on: 07/03/2023 09:31:46 CEST
In [2]:
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
In [3]:
overview("Austria", weeks=5);
2023-03-07T09:31:50.831692 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 200 200 300 300 400 400 7-day incidence rate (per 100K people) 422.1 Austria, last 5 weeks, last data point from 2023-03-06 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 20 40 60 80 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.0 0.1 0.2 daily change normalised per 100K 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.8 0.8 1.0 1.0 1.2 1.2 1.4 1.4 R & growth factor (based on cases) Austria cases daily growth factor Austria cases daily growth factor (rolling mean) Austria estimated R (using cases) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0.5 0.5 1.0 1.0 1.5 1.5 R & growth factor (based on deaths) Austria deaths daily growth factor Austria deaths daily growth factor (rolling mean) Austria estimated R (using deaths) 30 Jan 06 Feb 13 Feb 20 Feb 27 Feb 06 Mar 0 500 1000 1500 2000 cases doubling time [days] Austria doubling time cases (rolling mean) Austria doubling time deaths (rolling mean) 0 1801 3603 5404 7205 daily change Austria new cases (rolling 7d mean) Austria new cases 0.00 9.01 18.01 daily change Austria new deaths (rolling 7d mean) Austria new deaths 0 1369 2738 4106 5475 deaths doubling time [days]
In [4]:
overview("Austria");
2023-03-07T09:31:58.995441 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 0 1000 1000 2000 2000 3000 3000 7-day incidence rate (per 100K people) 422.1 Austria, last data point from 2023-03-06 Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 200 400 600 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0.0 0.5 1.0 1.5 daily change normalised per 100K Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0.8 0.8 1.0 1.0 1.2 1.2 1.4 1.4 R & growth factor (based on cases) Austria cases daily growth factor Austria cases daily growth factor (rolling mean) Austria estimated R (using cases) Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0.5 0.5 1.0 1.0 1.5 1.5 R & growth factor (based on deaths) Austria deaths daily growth factor Austria deaths daily growth factor (rolling mean) Austria estimated R (using deaths) Jan 20 May 20 Sep 20 Jan 21 May 21 Sep 21 Jan 22 May 22 Sep 22 Jan 23 May 23 0 2000 4000 6000 cases doubling time [days] Austria doubling time cases (rolling mean) Austria doubling time deaths (rolling mean) 0 18013 36026 54038 daily change Austria new cases (rolling 7d mean) Austria new cases 0.0 45.0 90.1 135.1 daily change Austria new deaths (rolling 7d mean) Austria new deaths 0 4493 8985 13478 deaths doubling time [days]
In [5]:
compare_plot("Austria", normalise=True);
2023-03-07T09:32:02.974004 image/svg+xml Matplotlib v3.7.1, https://matplotlib.org/ 2020-01 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 2023-05 0.001 0.001 0.1 0.1 10 10 1000 1000 daily new cases per 100K people (rolling 7-day mean) Daily cases (top) and deaths (below) for Austria Austria Germany Australia Poland Korea, South Belarus Switzerland US 2020-01 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 2023-05 0.0001 0.0001 0.001 0.001 0.01 0.01 0.1 0.1 1 1 daily new deaths per 100K people (rolling 7-day mean) Austria Germany Australia Poland Korea, South Belarus Switzerland US
In [6]:
# load the data
cases, deaths = get_country_data("Austria")

# get population of the region for future normalisation:
inhabitants = population("Austria")
print(f'Population of "Austria": {inhabitants} people')

# compose into one table
table = compose_dataframe_summary(cases, deaths)

# show tables with up to 1000 rows
pd.set_option("display.max_rows", 1000)

# display the table
table
Population of "Austria": 9006400 people
Out[6]:
total cases daily new cases total deaths daily new deaths
2023-03-06 5943417 2482 21923 1
2023-03-05 5940935 4269 21922 1
2023-03-04 5936666 5419 21921 14
2023-03-03 5931247 5099 21907 8
2023-03-02 5926148 6532 21899 8
... ... ... ... ...
2020-01-27 0 0 0 0
2020-01-26 0 0 0 0
2020-01-25 0 0 0 0
2020-01-24 0 0 0 0
2020-01-23 0 0 0 0

1139 rows × 4 columns

Explore the data in your web browser¶

  • If you want to execute this notebook, click here to use myBinder
  • and wait (~1 to 2 minutes)
  • Then press SHIFT+RETURN to advance code cell to code cell
  • See http://jupyter.org for more details on how to use Jupyter Notebook

Acknowledgements:¶

  • Johns Hopkins University provides data for countries
  • Robert Koch Institute provides data for within Germany
  • Atlo Team for gathering and providing data from Hungary (https://atlo.team/koronamonitor/)
  • Open source and scientific computing community for the data tools
  • Github for hosting repository and html files
  • Project Jupyter for the Notebook and binder service
  • The H2020 project Photon and Neutron Open Science Cloud (PaNOSC)

In [7]:
print(f"Download of data from Johns Hopkins university: cases at {fetch_cases_last_execution()} and "
      f"deaths at {fetch_deaths_last_execution()}.")
Download of data from Johns Hopkins university: cases at 07/03/2023 09:31:22 and deaths at 07/03/2023 09:31:21.
In [8]:
# to force a fresh download of data, run "clear_cache()"
In [9]:
print(f"Notebook execution took: {datetime.datetime.now()-start}")
Notebook execution took: 0:00:16.731567